Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IUBMB Life ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748776

ABSTRACT

This research delves into the exploration of the potential of tocopherol-based nanoemulsion as a therapeutic agent for cardiovascular diseases (CVD) through an in-depth molecular docking analysis. The study focuses on elucidating the molecular interactions between tocopherol and seven key proteins (1O8a, 4YAY, 4DLI, 1HW9, 2YCW, 1BO9 and 1CX2) that play pivotal roles in CVD development. Through rigorous in silico docking investigations, assessment was conducted on the binding affinities, inhibitory potentials and interaction patterns of tocopherol with these target proteins. The findings revealed significant interactions, particularly with 4YAY, displaying a robust binding energy of -6.39 kcal/mol and a promising Ki value of 20.84 µM. Notable interactions were also observed with 1HW9, 4DLI, 2YCW and 1CX2, further indicating tocopherol's potential therapeutic relevance. In contrast, no interaction was observed with 1BO9. Furthermore, an examination of the common residues of 4YAY bound to tocopherol was carried out, highlighting key intermolecular hydrophobic bonds that contribute to the interaction's stability. Tocopherol complies with pharmacokinetics (Lipinski's and Veber's) rules for oral bioavailability and proves safety non-toxic and non-carcinogenic. Thus, deep learning-based protein language models ESM1-b and ProtT5 were leveraged for input encodings to predict interaction sites between the 4YAY protein and tocopherol. Hence, highly accurate predictions of these critical protein-ligand interactions were achieved. This study not only advances the understanding of these interactions but also highlights deep learning's immense potential in molecular biology and drug discovery. It underscores tocopherol's promise as a cardiovascular disease management candidate, shedding light on its molecular interactions and compatibility with biomolecule-like characteristics.

2.
Food Chem ; 452: 139520, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723573

ABSTRACT

The current study addresses the growing demand for sustainable plant-based cheese alternatives by employing molecular docking and deep learning algorithms to optimize protein-ligand interactions. Focusing on key proteins (zein, soy, and almond protein) along with tocopherol and retinol, the goal was to improve texture, nutritional value, and flavor characteristics via dynamic simulations. The findings demonstrated that the docking analysis presented high accuracy in predicting conformational changes. Flexible docking algorithms provided insights into dynamic interactions, while analysis of energetics revealed variations in binding strengths. Tocopherol exhibited stronger affinity (-5.8Kcal/mol) to zein compared to retinol (-4.1Kcal/mol). Molecular dynamics simulations offered comprehensive insights into stability and behavior over time. The integration of machine learning algorithms improved the classification and the prediction accuracy, achieving a rate of 71.59%. This study underscores the significance of molecular understanding in driving innovation in the plant-based cheese industry, facilitating the development of sustainable alternatives to traditional dairy products.


Subject(s)
Cheese , Molecular Docking Simulation , Plant Proteins , Prunus dulcis , Tocopherols , Vitamin A , Zein , Plant Proteins/chemistry , Plant Proteins/metabolism , Cheese/analysis , Prunus dulcis/chemistry , Vitamin A/chemistry , Vitamin A/metabolism , Tocopherols/chemistry , Tocopherols/metabolism , Zein/chemistry , Zein/metabolism , Molecular Dynamics Simulation , Machine Learning , Glycine max/chemistry , Glycine max/metabolism , Support Vector Machine
3.
Foods ; 10(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34945700

ABSTRACT

Nanoencapsulation is an attractive technique used for incorporating essential oils in foods. Thus, our main goal was to formulate a novel nanoemulsion (NE) with nanoscale droplet size and lowest interfacial tension in the oil-water interface, contributing positively to the stability and the enhancement of essential oil potential. Thereby, response surface methodology (RSM), with mixture design was used to optimize the composition of the NE lipid phase. The essential oil combinations were encapsulated through high-pressure homogenization (HPH) with the binary emulsifier system (Tween 80: Gum Arabic). Then, the electrophoretic and physical properties were evaluated. We also conducted a follow-up stability and antimicrobial study that examined the stabilization mechanism of optimal NE. Thereafter, the effect of nanoencapsulation on the essential oil composition was assessed. The RSM results were best fitted into polynomial models with regression coefficient values of more than 0.95. The optimal NE showed a nanometer-sized droplet (270 nm) and lower interfacial tension (~11 mN/m), favoring negative ζ-potential (-15 mV), showing good stability under different conditions-it synergistically enhances the antimicrobial potential. GC-MS analysis showed that the use of HPH affected the active compounds, consistent with the differences in linalool and 2-Caren-10-al content. Hence, the novel nanometric delivery system contributes to food industry fortification.

4.
Food Res Int ; 137: 109723, 2020 11.
Article in English | MEDLINE | ID: mdl-33233292

ABSTRACT

In this study, the effect of spraying method as an application technique for xanthan gum-based edible coatings was investigated, based on its barrier and microbial properties on fresh-cut lotus root. Xanthan gum solutions (0.1%, 0.3%, and 0.5%) were prepared and incorporated with 2% (w/w) citric acid as an anti-browning agent and 1% (w/w) glycerol as plasticizer. The coatings were then sprayed using a pilot spray system to 5 mm-thick slices of fresh-cut lotus root for 20 s, packed in polyethylene bags, stored for 16 d at 5 °C and analyzed for color, pH, morphology and microbial counts. It was found that spray-coated fresh-cut lotus root samples had significant reduction in the total color changes as compared to non-coated samples. The experimental results suggested that the spray coating treatments were effective in decreasing the enzymatic browning of fresh-cut lotus root during storage which could potentially increase its shelf-life in the market. In addition, we have also found that the xanthan gum-based spray coated treatments were also effective against inhibiting the growth of Bacillus subtilis during 24 h of incubation which were indicated by the lower microbial counts recorded as compared to non-coated fresh-cut lotus root samples. In this part of the work, the author highlighted the spray coating technique of xanthan gum-based edible coatings as a promising strategy in improving the storage stability of fresh-cut lotus root during post-harvest storage. Overall, the application of edible coatings is a promising strategy in extending the shelf life of fresh-cut lotus root. In the future, the author aims to widen the scope of the application of these coatings to other agricultural products which are prone to degradation during storage in the market.


Subject(s)
Edible Films , Nelumbo , Polysaccharides, Bacterial , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...