Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(8): e2204931, 2023 03.
Article in English | MEDLINE | ID: mdl-36507618

ABSTRACT

Electrically powered micro- and nanomotors are promising tools for in vitro single-cell analysis. In particular, single cells can be trapped, transported, and electroporated by a Janus particle (JP) using an externally applied electric field. However, while dielectrophoretic (DEP)-based cargo manipulation can be achieved at high-solution conductivity, electrical propulsion of these micromotors becomes ineffective at solution conductivities exceeding ≈0.3 mS cm-1 . Here, JP cargo manipulation and transport capabilities to conductive near-physiological (<6 mS cm-1 ) solutions are extended successfully by combining magnetic field-based micromotor propulsion and navigation with DEP-based manipulation of various synthetic and biological cargos. Combination of a rotating magnetic field and electric field results in enhanced micromotor mobility and steering control through tuning of the electric field frequency. In addition, the micromotor's ability of identifying apoptotic cell among viable and necrotic cells based on their dielectrophoretic difference is demonstrated, thus, enabling to analyze the apoptotic status in the single-cell samples for drug discovery, cell therapeutics, and immunotherapy. The ability to trap and transport live cells towards regions containing doxorubicin-loaded liposomes is also demonstrated. This hybrid micromotor approach for label-free trapping, transporting, and sensing of selected cells within conductive solutions opens new opportunities in drug delivery and single-cell analysis, where close-to-physiological media conditions are necessary.


Subject(s)
Drug Delivery Systems , Magnetic Fields , Electric Conductivity , Single-Cell Analysis , Doxorubicin
SELECTION OF CITATIONS
SEARCH DETAIL
...