Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 3(16)2018 08 23.
Article in English | MEDLINE | ID: mdl-30135317

ABSTRACT

Alterations in the synthesis and bioavailability of NO are central to the pathogenesis of cardiovascular and metabolic disorders. Although endothelial NO synthase-derived (eNOS-derived) NO affects mitochondrial long-chain fatty acid ß-oxidation, the pathophysiological significance of this regulation remains unclear. Accordingly, we determined the contributions of eNOS/NO signaling in the adaptive metabolic responses to fasting and in age-induced metabolic dysfunction. Four-month-old eNOS-/- mice are glucose intolerant and exhibit serum dyslipidemia and decreased capacity to oxidize fatty acids. However, during fasting, eNOS-/- mice redirect acetyl-CoA to ketogenesis to elevate circulating levels of ß-hydroxybutyrate similar to wild-type mice. Treatment of 4-month-old eNOS-/- mice with nitrite for 10 days corrected the hypertension and serum hyperlipidemia and normalized the rate of fatty acid oxidation. Fourteen-month-old eNOS-/- mice exhibited metabolic derangements, resulting in reduced utilization of fat to generate energy, lower resting metabolic activity, and diminished physical activity. Seven-month administration of nitrite to eNOS-/- mice reversed the age-dependent metabolic derangements and restored physical activity. While the eNOS/NO signaling is not essential for the metabolic adaptation to fasting, it is critical for regulating systemic metabolic homeostasis in aging. The development of age-dependent metabolic disorder is prevented by low-dose replenishment of bioactive NO.


Subject(s)
Aging/metabolism , Homeostasis/drug effects , Nitric Oxide Synthase Type III/deficiency , Sodium Nitrite/administration & dosage , Administration, Oral , Aging/drug effects , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Fasting/metabolism , Humans , Hyperlipidemias/drug therapy , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Hypertension/drug therapy , Hypertension/genetics , Hypertension/metabolism , Male , Mice , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Signal Transduction/drug effects , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...