Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AIMS Microbiol ; 6(2): 106-120, 2020.
Article in English | MEDLINE | ID: mdl-32617444

ABSTRACT

For the first time, in the literature review we presents the molecular genetic structure of Salmonella Enteritidis populations in Russia, and particularly, in Siberia and the Far East of the country. Pathogen population in Russia has been compared with Salmonella populations circulating in different countries of the world. It has been shown that the microbial population is heterogeneous, but it is possible to identify the dominant and main genotypes, which determine up to 90% of the total population morbidity. The data were obtained as a result of a 30-year monitoring (1988 to 2018) by studying the microbial plasmid profiles. It was shown that the same S. Enteritidis clones circulate throughout Russia, however, their significance in the population morbidity may vary depending on geographic and temporal characteristics. Population is characterized by heterogeneity and relative stability of the plasmid types' structure. At the same time, the population is also specified by variability, reflected as a simple change of the annual number of constantly detected plasmid types, and the appearance of new ones that can play a significant role in the etiology of Salmonella infection.

2.
IEEE Trans Biomed Circuits Syst ; 10(1): 175-85, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25616075

ABSTRACT

A wirelessly powered 11 µW transceiver for implantable devices has been designed and demonstrated through 35 mm of porcine heart tissue. The prototype was implemented in 65 nm CMOS occupying 1 mm × 1 mm with a 2 mm × 2 mm off-chip antenna. The IC consists of a rectifier, regulator, demodulator, modulator, controller, and sensor interface. The forward link transfers power and data on a 1.32 GHz carrier using low-depth ASK modulation that minimizes impact on power delivery and achieves from 4 to 20 Mbps with 0.3 pJ/bit at 4 Mbps. The backscattering link modulates the antenna impedance with a configurable load for operation in diverse biological environments and achieves up to 2 Mbps at 0.7 pJ/bit. The device supports TDMA, allowing for operation of multiple devices from a single external transceiver.


Subject(s)
Prostheses and Implants , Telemetry/instrumentation , Wireless Technology/instrumentation , Animals , Electric Impedance , Equipment Design , Humans , Swine
3.
IEEE Trans Biomed Circuits Syst ; 6(6): 523-32, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23853253

ABSTRACT

A wirelessly powered and controlled implantable device capable of locomotion in a fluid medium is presented. Two scalable low-power propulsion methods are described that achieve roughly an order of magnitude better performance than existing methods in terms of thrust conversion efficiency. The wireless prototype occupies 0.6 mm × 1 mm in 65 nm CMOS with an external 2 mm × 2 mm receive antenna. The IC consists of a matching network, a rectifier, a bandgap reference, a regulator, a demodulator, a digital controller, and high-current drivers that interface directly with the propulsion system. It receives 500 µW from a 2 W 1.86 GHz power signal at a distance of 5 cm. Asynchronous pulse-width modulation on the carrier allows for data rates from 2.5-25 Mbps with energy efficiency of 0.5 pJ/b at 10 Mbps. The received data configures the propulsion system drivers, which are capable of driving up to 2 mA at 0.2 V and can achieve speed of 0.53 cm/sec in a 0.06 T magnetic field.


Subject(s)
Electric Power Supplies , Prostheses and Implants , Wireless Technology , Biomedical Engineering/instrumentation , Drug Delivery Systems/instrumentation , Equipment Design , Humans , Hydrodynamics , Magnetic Phenomena , Motion , Telemetry/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...