Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(11): 8815-8823, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38421198

ABSTRACT

To capture weak light fluxes, green photosynthetic bacteria have unique structures - chlorosomes, consisting of 104-5 molecules of bacteriochlorophyll (BChl) c, d, e. Chlorosomes are attached to the cytoplasmic membrane through the baseplate, a paracrystalline protein structure containing BChl a and carotenoids (Car). The most important function of Car is the quenching of triplet states of BChl, which prevents the formation of singlet oxygen and thereby provides photoprotection. In our work, we studied the dynamics of the triplet states of BChl a and Car in the baseplate of Chloroflexus aurantiacus chlorosomes using picosecond differential spectroscopy. BChl a of the baseplate was excited into the Qy band at 810 nm, and the corresponding absorption changes were recorded in the range of 420-880 nm. It was found that the formation of the Car triplet state occurs in ∼1.3 ns, which is ∼3 times faster than the formation of this state in the peripheral antenna of C. aurantiacus according to literature data. The Car triplet state was recorded by the characteristic absorption band T1 → Tn at ∼550 nm. Simultaneously with the appearance of absorption T1 → Tn, there was a bleaching of the singlet absorption of Car in the region of 400-500 nm. Theoretical modeling made it possible to estimate the characteristic time of formation of the triplet state of BChl a as ∼0.5 ns. It is shown that the experimental data are well described by the sequential scheme of formation and quenching of the BChl a triplet state: BChl a* → BChl aT → CarT. Thus, carotenoids from green bacteria effectively protect the baseplate from possible damage by singlet oxygen.


Subject(s)
Bacteriochlorophyll A , Carotenoids , Chloroflexus , Carotenoids/metabolism , Singlet Oxygen , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacteriochlorophylls/chemistry
2.
Biochemistry (Mosc) ; 88(5): 704-715, 2023 May.
Article in English | MEDLINE | ID: mdl-37331716

ABSTRACT

Process of photosynthesis in the green bacteria Chloroflexus (Cfx.) aurantiacus starts from absorption of light by chlorosomes, peripheral antennas consisting of thousands of bacteriochlorophyll c (BChl c) molecules combined into oligomeric structures. In this case, the excited states are formed in BChl c, energy of which migrates along the chlorosome towards the baseplate and further to the reaction center, where the primary charge separation occurs. Energy migration is accompanied by non-radiative electronic transitions between the numerous exciton states, that is, exciton relaxation. In this work, we studied dynamics of the exciton relaxation in Cfx. aurantiacus chlorosomes using differential femtosecond spectroscopy at cryogenic temperature (80 K). Chlorosomes were excited by 20-fs light pulses at wavelengths in the range from 660 to 750 nm, and differential (light-dark) absorption kinetics were measured at a wavelength of 755 nm. Mathematical analysis of the obtained data revealed kinetic components with characteristic times of 140, 220, and 320 fs, which are responsible for exciton relaxation. As the excitation wavelength decreased, the number and relative contribution of these components increased. Theoretical modelling of the obtained data was carried out based of the cylindrical model of BChl c. Nonradiative transitions between the groups of exciton bands were described by a system of kinetic equations. The model that takes into account energy and structural disorder of chlorosomes turned out to be the most adequate.


Subject(s)
Chloroflexus , Chloroflexus/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism , Spectrum Analysis , Bacteriochlorophylls/chemistry , Photosynthesis
3.
Biochemistry (Mosc) ; 88(12): 2084-2093, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38462452

ABSTRACT

In green photosynthetic bacteria, light is absorbed by bacteriochlorophyll (BChl) c/d/e oligomers, which are located in chlorosomes - unique structures created by Nature to collect the energy of very weak light fluxes. Using coherent femtosecond spectroscopy at cryogenic temperature, we detected and studied low-frequency vibrational motions of BChl c oligomers in chlorosomes of the green bacteria Chloroflexus (Cfx.) aurantiacus. The objects of the study were chlorosomes isolated from the bacterial cultures grown under different light intensity. It was found that the Fourier spectrum of low-frequency coherent oscillations in the Qy band of BChl c oligomers depends on the light intensity used for the growth of bacteria. It turned out that the number of low-frequency vibrational modes of chlorosomes increases as illumination under which they were cultivated decreases. Also, the frequency range within which these modes are observed expands, and frequencies of the most modes change. Theoretical modeling of the obtained data and analysis of the literature led to conclusion that the structural basis of Cfx. aurantiacus chlorosomes are short linear chains of BChl c combined into more complex structures. Increase in the length of these chains in chlorosomes grown under weaker light leads to the observed changes in the spectrum of vibrations of BChl c oligomers. This increase is an effective mechanism for bacteria adaptation to changing external conditions.


Subject(s)
Bacteriochlorophylls , Chloroflexus , Bacteriochlorophylls/chemistry , Bacterial Proteins/chemistry , Spectrum Analysis , Bacteria , Light
4.
Photosynth Res ; 154(3): 291-302, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36115930

ABSTRACT

Chlorosomes of green bacteria can be considered as a prototype of future artificial light-harvesting devices due to their unique property of self-assembly of a large number of bacteriochlorophyll (BChl) c/d/e molecules into compact aggregates. The presence of carotenoids (Cars) in chlorosomes is very important for photoprotection, light harvesting and structure stabilization. In this work, we studied for the first time the electrochromic band shift (Stark effect) in Cars of the phototrophic filamentous green bacterium Chloroflexus (Cfx.) aurantiacus induced by fs light excitation of the main pigment, BChl c. The high accuracy of the spectral measurements permitted us to extract a small wavy spectral feature, which, obviously, can be associated with the dynamic shift of the Car absorption band. A global analysis of spectroscopy data and theoretical modeling of absorption spectra showed that near 60% of Cars exhibited a red Stark shift of ~ 25 cm-1 and the remaining 40% exhibited a blue shift. We interpreted this finding as evidence of various orientations of Car in chlorosomes. We estimated the average value of the light-induced electric field strength in the place of Car molecules as ~ 106 V/cm and the average distance between Car and the neighboring BChl c as ~ 10 Å. We concluded that the dynamics of the Car electrochromic band shift mainly reflected the dynamics of exciton migration through the chlorosome toward the baseplate within ~ 1 ps. Our work has unambiguously shown that Cars are sensitive indicators of light-induced internal electric fields in chlorosomes.


Subject(s)
Chloroflexus , Bacteriochlorophylls/chemistry , Carotenoids/chemistry
5.
Photosynth Res ; 154(2): 207-223, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36070062

ABSTRACT

We present here a tribute to one of the foremost biophysicists of our time, Vladimir Anatolievich Shuvalov, who made important contributions in bioenergetics, especially on the primary steps of conversion of light energy into charge-separated states in both anoxygenic and oxygenic photosynthesis. For this, he and his research team exploited pico- and femtosecond transient absorption spectroscopy, photodichroism & circular dichroism spectroscopy, light-induced FTIR (Fourier-transform infrared) spectroscopy, and hole-burning spectroscopy. We remember him for his outstanding leadership and for being a wonderful mentor to many scientists in this area. Reminiscences by many [Suleyman Allakhverdiev (Russia); Robert Blankenship (USA); Richard Cogdell (UK); Arvi Freiberg (Estonia); Govindjee Govindjee (USA); Alexander Krasnovsky, jr, (Russia); William Parson (USA); Andrei Razjivin (Russia); Jian- Ren Shen (Japan); Sergei Shuvalov (Russia); Lyudmilla Vasilieva (Russia); and Andrei Yakovlev (Russia)] have included not only his wonderful personal character, but his outstanding scientific research.

6.
Phys Chem Chem Phys ; 23(22): 12761-12770, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34042141

ABSTRACT

In photosynthetic green bacteria, chlorosomes provide light harvesting with high efficiency. Chlorosomal carotenoids (Cars) participate in light harvesting together with the main pigment, bacteriochlorophyll (BChl) c/d/e. In the present work, we studied the excited-state dynamics in Cars from Chloroflexus (Cfx.) aurantiacus chlorosomes by near infrared pump-probe spectroscopy with 25 fs temporal resolution at room temperature. The S2 state of Cars was excited at a wavelength of ∼520 nm, and the absorption changes were probed at 860-1000 nm where the excited state absorption (ESA) of the Cars S2 state occurred. Global analysis of the spectroscopy data revealed an ultrafast (∼15 fs) and large (>130 nm) red shift of the S2 ESA spectrum together with the well-known S2 → S1 IC (∼190 fs) and Cars → BChl c EET (∼120 fs). The S2 lifetime was found to be ∼74 fs. Our findings are in line with earlier results on the excited-state dynamics in Cars in vitro. To explain the extremely fast S2 dynamics, we have tentatively proposed two alternative schemes. The first scheme assumed the formation of a vibrational wavepacket in the S2 state, the motion of which caused a dynamical red shift of the S2 ESA spectrum. The second scheme assumed the presence of two potential minima in the S2 state and incoherent energy transfer between them.


Subject(s)
Carotenoids/metabolism , Chloroflexus/chemistry , Carotenoids/chemistry , Chloroflexus/metabolism , Photochemical Processes , Spectroscopy, Near-Infrared , Time Factors
7.
Biochim Biophys Acta Bioenerg ; 1862(6): 148396, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33581107

ABSTRACT

Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104-105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400-900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret â†’ Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100-270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret â†’ Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.


Subject(s)
Bacterial Proteins/metabolism , Bacteriochlorophylls/metabolism , Chloroflexus/metabolism , Energy Transfer , Light , Organelles/metabolism , Photosynthesis , Chloroflexus/radiation effects , Kinetics , Organelles/radiation effects
8.
Sci Rep ; 10(1): 228, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937882

ABSTRACT

Early-time dynamics of absorbance changes (light minus dark) in the long-wavelength Qy absorption band of bacteriochlorophyll dimer P of isolated reaction centers (RCs) from thermophilic green bacterium Chloroflexus (Cfx.) aurantiacus was studied by difference pump-probe spectroscopy with 18-fs resolution at cryogenic temperature. It was found that the stimulated emission spectrum gradually moves to the red on the ~100-fs time scale and subsequently oscillates with a major frequency of ~140 cm-1. By applying the non-secular Redfield theory and linear susceptibility theory, the coherent dynamics of the stimulated emission from the excited state of the primary electron donor, bacteriochlorophyll dimer P*, was modeled. The model showed the possibility of an extremely fast transition from the locally excited state P1* to the spectrally different excited state P2*. This transition is clearly seen in the kinetics of the stimulated emission at 880 and 945 nm, where mostly P1* and P2* states emit, respectively. These findings are similar to those obtained previously in RCs of the purple bacterium Rhodobacter (Rba.) sphaeroides. The assumption about the existence of the second excited state P2* helps to explain the complicated temporal behavior of the ΔA spectrum measured by pump-probe spectroscopy. It is interesting that, in spite of the strong coupling between the P1* and P2* states assumed in our model, the form of the coherent oscillations is mainly defined by pure vibrational coherence in the excited states. A possible nature of the P2* state is discussed.


Subject(s)
Chloroflexus/physiology , Electron Transport , Photosynthesis , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Signal Transduction , Temperature
9.
Photosynth Res ; 146(1-3): 95-108, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31939070

ABSTRACT

Chlorosomes of green photosynthetic bacteria are the most amazing example of long-range ordered natural light-harvesting antennae. Chlorosomes are the largest among all known photosynthetic light-harvesting structures (~ 104-105 pigments in the aggregated state). The chlorosomal bacteriochlorophyll (BChl) c/d/e molecules are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Despite numerous investigations, a consensus regarding the spatial structure of chlorosomal antennae has not yet been reached. In the present work, we studied hyperchromism/hypochromism in the chlorosomal BChl c Q/B absorption bands of the green photosynthetic bacterium Chloroflexus (Cfx.) aurantiacus. The chlorosomes were isolated from cells grown under different light intensities and therefore, as we discovered earlier, they had different sizes of both BChl c antennae and their unit building blocks. We have shown experimentally that the Q-/B-band hyperchromism/hypochromism is proportional to the size of the chlorosomal antenna. We explained theoretically these findings in terms of excitonic intensity borrowing between the Q and B bands for the J-/H-aggregates of the BChls. The theory developed by Gülen (Photosynth Res 87:205-214, 2006) showed the dependence of the Q-/B-band hyperchromism/hypochromism on the structure of the aggregates. For the model of exciton-coupled BChl c linear chains within a unit building block, the theory predicted an increase in the hyperchromism/hypochromism with the increase in the number of molecules per chain and a decrease in it with the increase in the number of chains. It was previously shown that this model ensured a good fit with spectroscopy experiments and approximated the BChl c low packing density in vivo. The presented experimental and theoretical studies of the Q-/B-band hyperchromism/hypochromism permitted us to conclude that the unit building block of Cfx. aurantiacus chlorosomes comprises of several short BChl c chains.This conclusion is in accordance with previous linear and nonlinear spectroscopy studies on Cfx. aurantiacus chlorosomes.


Subject(s)
Bacteriochlorophylls/metabolism , Chloroflexus/metabolism , Photosynthesis , Bacterial Proteins/metabolism , Chloroflexus/radiation effects , Light , Organelles/metabolism , Spectrum Analysis
10.
Physiol Plant ; 166(1): 12-21, 2019 May.
Article in English | MEDLINE | ID: mdl-30499123

ABSTRACT

Bacteriochlorophyll (BChl) c pigments in the aggregated state are responsible for efficient light harvesting in chlorosomes of the filamentous anoxygenic photosynthetic bacterium, Chloroflexus (Cfx.) aurantiacus. Absorption of light creates excited states in the BChl c aggregates. After subpicosecond intrachlorosomal energy transfer, redistribution and relaxation, the excitation is transferred to the BChl a complexes and further to reaction centers on the picosecond time scale. In this work, the femtosecond excited state dynamics within BChl c oligomers of isolated Cfx. aurantiacus chlorosomes was studied by double difference pump-probe spectroscopy at room temperature. Difference (Alight - Adark ) spectra corresponding to excitation at 725 nm (blue side of the BChl c absorption band) were compared with those corresponding to excitation at 750 nm (red side of the BChl c absorption band). A very fast (time constant 70 ± 10 fs) rise kinetic component was found in the stimulated emission (SE) upon excitation at 725 nm. This component was absent at 750-nm excitation. These data were explained by the dynamical red shift of the SE due to excited state relaxation. The nature and mechanisms of the ultrafast excited state dynamics in chlorosomal BChl c aggregates are discussed.


Subject(s)
Chloroflexus/metabolism , Photosynthesis/physiology , Energy Transfer , Kinetics , Plant Proteins/metabolism , Temperature
11.
Photosynth Res ; 125(1-2): 9-22, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25240681

ABSTRACT

Electron-vibrational relaxation in the excited state of the primary electron donor, bacteriochlorophyll dimer P, in the reaction centers (RCs) of purple photosynthetic bacteria Rhodobacter sphaeroides is modeled. A multimode model of three states (i.e., the ground state Pg, initially excited P1*, and relaxed excited P2*) is used to calculate the incoherent dynamics of the difference (ΔA) spectra on a femtosecond timescale for the YM210 W mutant RCs. The relaxation processes are described by the step-ladder model. The model shows that the electron-vibrational relaxation in the excited state of P is visualized by the transient red shift of the stimulated emission from P*. The dynamics of this shift is observed as a change in the ΔA spectrum shape in its red-most part, within a few hundreds of femtoseconds after excitation. As a result, an initial rise in the red-side ΔA kinetics is delayed with respect to the blue-side kinetics. The time constant of the P1* â†’ P2* electronic relaxation (54 fs) and the Pg, P1*, and P2* vibrational relaxations (120 fs), used in the model, provided the best fit of the experimental time-resolved ΔA spectra and kinetics at 90 and 293 K. The possible nature of the P1* â†’ P2* electronic relaxation is discussed.


Subject(s)
Bacteriochlorophylls/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/physiology , Electron Transport , Kinetics , Models, Theoretical , Photosynthesis , Spectrum Analysis
12.
J Bioinform Comput Biol ; 6(4): 643-66, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18763734

ABSTRACT

Transient absorption difference spectroscopy with approximately 20 femtosecond (fs) resolution was applied to study the time and spectral evolution of low-temperature (90 K) absorbance changes in isolated reaction centers (RCs) of Chloroflexus (C.) aurantiacus. In RCs, the composition of the B-branch chromophores is different with respect to that of purple bacterial RCs by occupying the B(B) binding site of accessory bacteriochlorophyll by bacteriopheophytin molecule (Phi(B)). It was found that the nuclear wave packet motion induced on the potential energy surface of the excited state of the primary electron donor P* by approximately 20 fs excitation leads to a coherent formation of the states P+Phi(B)(-) and P+B(A)(-) (B(A) is a bacteriochlorophyll monomer in the A-branch of cofactors). The processes were studied by measuring coherent oscillations in kinetics of the absorbance changes at 900 nm and 940 nm (P* stimulated emission), at 750 nm and 785 nm (Phi(B) absorption bands), and at 1,020-1028 nm (B(A)(-) absorption band). In RCs, the immediate bleaching of the P band at 880 nm and the appearance of the stimulated wave packet emission at 900 nm were accompanied (with a small delay of 10-20 fs) by electron transfer from P* to the B-branch with bleaching of the Phi(B) absorption band at 785 nm due to Phi(B)(-) formation. These data are consistent with recent measurements for the mutant HM182L Rb. sphaeroides RCs (Yakovlev et al., Biochim Biophys Acta 1757:369-379, 2006). Only at a delay of 120 fs was the electron transfer from P* to the A-branch observed with a development of the B(A)(-) absorption band at 1028 nm. This development was in phase with the appearance of the P* stimulated emission at 940 nm. The data on the A-branch electron transfer in C. aurantiacus RCs are consistent with those observed in native RCs of Rb. sphaeroides. The mechanism of charge separation in RCs with the modified B-branch pigment composition is discussed in terms of coupling between the nuclear wave packet motion and electron transfer from P* to Phi(B) and B(A) primary acceptors in the B-branch and A-branch, respectively.


Subject(s)
Chloroflexus/chemistry , Chloroflexus/radiation effects , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/radiation effects , Dose-Response Relationship, Radiation , Electron Transport , Light , Radiation Dosage
13.
Biochim Biophys Acta ; 1757(5-6): 369-79, 2006.
Article in English | MEDLINE | ID: mdl-16829225

ABSTRACT

Femtosecond absorption difference spectroscopy was applied to study the time and spectral evolution of low-temperature (90 K) absorbance changes in isolated reaction centers (RCs) of the HM182L mutant of Rhodobacter (Rb.) sphaeroides. In this mutant, the composition of the B-branch RC cofactors is modified with respect to that of wild-type RCs by replacing the photochemically inactive BB accessory bacteriochlorophyll (BChl) by a photoreducible bacteriopheophytin molecule (referred to as PhiB). We have examined vibrational coherence within the first 400 fs after excitation of the primary electron donor P with 20-fs pulses at 870 nm by studying the kinetics of absorbance changes at 785 nm (PhiB absorption band), 940 nm (P*-stimulated emission), and 1020 nm (BA- absorption band). The results of the femtosecond measurements are compared with those recently reported for native Rb. sphaeroides R-26 RCs containing an intact BB BChl. At delay times longer than approximately 50 fs (maximum at 120 fs), the mutant RCs exhibit a pronounced BChl radical anion (BA-) absorption band at 1020 nm, which is similar to that observed for Rb. sphaeroides R-26 RCs and represents the formation of the intermediate charge-separated state P+ BA-. Femtosecond oscillations are revealed in the kinetics of the absorption development at 1020 nm and of decay of the P*-stimulated emission at 940 nm, with the oscillatory components of both kinetics displaying a generally synchronous behavior. These data are interpreted in terms of coupling of wave packet-like nuclear motions on the potential energy surface of the P* excited state to the primary electron-transfer reaction P*-->P+ BA- in the A-branch of the RC cofactors. At very early delay times (up to 80 fs), the mutant RCs exhibit a weak absorption decrease around 785 nm that is not observed for Rb. sphaeroides R-26 RCs and can be assigned to a transient bleaching of the Qy ground-state absorption band of the PhiB molecule. In the range of 740-795 nm, encompassing the Qy optical transitions of bacteriopheophytins HA, HB, and PhiB, the absorption difference spectra collected for mutant RCs at 30-50 fs resemble the difference spectrum of the P+ PhiB- charge-separated state previously detected for this mutant in the picosecond time domain (E. Katilius, Z. Katiliene, S. Lin, A.K.W. Taguchi, N.W. Woodbury, J. Phys. Chem., B 106 (2002) 1471-1475). The dynamics of bleaching at 785 nm has a non-monotonous character, showing a single peak with a maximum at 40 fs. Based on these observations, the 785-nm bleaching is speculated to reflect reduction of 1% of PhiB in the B-branch within about 40 fs, which is earlier by approximately 80 fs than the reduction process in the A-branch, both being possibly linked to nuclear wave packet motion in the P* state.


Subject(s)
Bacterial Chromatophores/physiology , Bacteriochlorophylls/physiology , Pheophytins/physiology , Photosynthetic Reaction Center Complex Proteins/physiology , Pigments, Biological/metabolism , Rhodobacter sphaeroides/physiology , Bacterial Chromatophores/genetics , Bacteriochlorophylls/genetics , Electron Transport , Kinetics , Mutagenesis, Site-Directed , Pheophytins/genetics , Photosynthetic Reaction Center Complex Proteins/genetics , Pigments, Biological/genetics , Rhodobacter sphaeroides/genetics , Spectrum Analysis
14.
Biochemistry ; 41(47): 14019-27, 2002 Nov 26.
Article in English | MEDLINE | ID: mdl-12437359

ABSTRACT

In Rhodobacter sphaeroides R-26 reaction centers (RCs) the nuclear wave packet induced by 25 fs excitation at 90 K moves on the primary electron donor P* potential energy hypersurface with initial frequency at approximately 130 cm(-1) (monitored by stimulated emission measurement). At the long-wavelength side of P* stimulated emission at 935 nm the wave packet is transferred to the surface with P(+)B(A)(-) character at 120, 380, 1.2 fs, etc. delays (monitored by measurement of the primary electron acceptor B(A)(-) band at 1020 nm). However, only beginning from 380 fs delay and later the relative stabilization of the state P(+)B(A)(-) is observed. This is accompanied by the electron transfer to bacteriopheophytin H(A) (monitored by H(A) band measurement at 760 nm). The most active mode of 32 cm(-1) in the electron transfer and its overtones up to the seventh were found in the Fourier transform spectrum of the oscillatory part of the kinetics of the P* stimulated emission and of the P(+)B(A)(-) and P(+)H(A)(-) formation. This mode and its overtones are apparently populated via the 130 cm(-1) vibrational mode. The deuteration of the sample shifts the fundamental frequency (32 cm(-1)) and all overtones by the same factor of approximately 1.3. This mode and its overtones are suppressed by a factor of approximately 4.7 in the dry film of RCs. The results obtained indicate that the 32 cm(-1) mode might be related to a rotation of hydrogen-containing groups (possibly the water molecule) participating in the modulation of the primary electron transfer from P* to B(A)(-) in at least 35% of RCs. The Brookhaven Protein Data Bank (1PRC) displays the water molecule located at the position HOH302 between His M200 (axial ligand for P(B)) and the oxygen of ring V of B(A) which might be a part (approximately 35%) of the molecular pathway for electron transfer from P* to B(A).


Subject(s)
Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Amino Acid Sequence , Darkness , Electron Transport , Kinetics , Light , Models, Molecular , Photosynthetic Reaction Center Complex Proteins/chemistry , Protein Conformation , Thermodynamics
15.
Biochemistry ; 41(8): 2667-74, 2002 Feb 26.
Article in English | MEDLINE | ID: mdl-11851413

ABSTRACT

Formation and coherent propagation of nuclear wavepackets on potential energy surfaces of the excited state of the primary electron donor P and of the charge transfer states P(+)B(A)(-) and P(+)H(A)(-) were studied in native and pheophytin-modified Rhodobacter sphaeroides R-26 reaction centers (RCs) induced by 25 fs excitation (where B(A) and H(A) are the primary and secondary electron acceptors, respectively). The processes were monitored by measuring coherent oscillations in kinetics of the time evolution of the stimulated emission band of P at 935 nm, of the absorption band of B(A)(-) at 1020 nm, and of the bleaching band of H(A) at 760 nm. It was found that the nuclear wavepacket motion on the 130-140 cm(-1) surface of P is directly induced by light absorption in P. When the wavepacket approaches the intersection between P and P(+)B(A)(-) surfaces at 120 and 380 fs delays, the formation of intermediate mixed-state emitting light at 935 nm (P) and absorbing light at 1020 nm (P(+)B(A)(-)) takes place. At the latter time, the wavepacket is transferred to the 32 cm(-1) mode which can belong to the P hypersurface effectively transferring the wavepacket to the P(+)B(A)(-) surface or can represent a diabatic surface which is formed by the states P and P(+)B(A)(-). The wavepacket motion on the P(+)B(A)(-) surface or on the P(+)B(A)(-) part of the mixing surface is accompanied by irreversible electron transfer to H(A). This process is monitored by the kinetics of 1020 nm band development and 760 nm band bleaching (delayed with respect to 1020 nm band development) which both have the enhanced 32 cm(-1) mode in Fourier transform (FT) spectra. The mechanism of wavepacket transfer from the 130-140 cm(-1) to the 32 cm(-1) mode is discussed.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/chemistry , Electron Transport , Kinetics , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...