Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 23(9): 1-31, 2018 08.
Article in English | MEDLINE | ID: mdl-30141286

ABSTRACT

Nowadays, dynamically developing optical (photonic) technologies play an ever-increasing role in medicine. Their adequate and effective implementation in diagnostics, surgery, and therapy needs reliable data on optical properties of human tissues, including skin. This paper presents an overview of recent results on the measurements and control of tissue optical properties. The issues reported comprise a brief review of optical properties of biological tissues and efficacy of optical clearing (OC) method in application to monitoring of diabetic complications and visualization of blood vessels and microcirculation using a number of optical imaging technologies, including spectroscopic, optical coherence tomography, and polarization- and speckle-based ones. Molecular modeling of immersion OC of skin and specific technique of OC of adipose tissue by its heating and photodynamic treatment are also discussed.


Subject(s)
Optical Imaging/methods , Skin , Animals , Blood Vessels/chemistry , Blood Vessels/diagnostic imaging , Cerebral Cortex/blood supply , Cerebral Cortex/diagnostic imaging , Collagen/chemistry , Glycerol/chemistry , Humans , Male , Mice , Rabbits , Rats , Refractometry , Skin/blood supply , Skin/diagnostic imaging , Tail/blood supply , Tail/diagnostic imaging
2.
J Biomed Opt ; 21(7): 71111, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27027930

ABSTRACT

Immersion optical clearing makes it possible to use transmission polarized-light microscopy for characterization of thick (200 to 2000 µm) layers of biological tissues. We discuss polarization properties of thick samples in the context of the problem of characterization of collagen fiber alignment in connective tissues such as sclera and dermis. Optical chirality caused by azimuthal variations of the macroscopic (effective) optic axis of the medium across the sample thickness should be considered in polarization mapping of thick samples of these tissues. We experimentally evaluate to what extent the optical chirality affects the measurement results in typical situations and show under what conditions it can be easily taken into account and does not hinder, but rather helps, in characterization of collagen fiber alignment.


Subject(s)
Collagen/analysis , Collagen/chemistry , Image Processing, Computer-Assisted/methods , Microscopy, Polarization/methods , Animals , Rats , Sclera/chemistry , Skin/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...