Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9846, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684715

ABSTRACT

Astrocytes are glycolytically active cells in the central nervous system playing a crucial role in various brain processes from homeostasis to neurotransmission. Astrocytes possess a complex branched morphology, frequently examined by fluorescent microscopy. However, staining and fixation may impact the properties of astrocytes, thereby affecting the accuracy of the experimental data of astrocytes dynamics and morphology. On the other hand, phase contrast microscopy can be used to study astrocytes morphology without affecting them, but the post-processing of the resulting low-contrast images is challenging. The main result of this work is a novel approach for recognition and morphological analysis of unstained astrocytes based on machine-learning recognition of microscopic images. We conducted a series of experiments involving the cultivation of isolated astrocytes from the rat brain cortex followed by microscopy. Using the proposed approach, we tracked the temporal evolution of the average total length of branches, branching, and area per astrocyte in our experiments. We believe that the proposed approach and the obtained experimental data will be of interest and benefit to the scientific communities in cell biology, biophysics, and machine learning.


Subject(s)
Astrocytes , Machine Learning , Microscopy, Phase-Contrast , Astrocytes/cytology , Animals , Microscopy, Phase-Contrast/methods , Rats , Cells, Cultured , Image Processing, Computer-Assisted/methods , Cerebral Cortex/cytology
2.
J Colloid Interface Sci ; 608(Pt 1): 564-574, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34626996

ABSTRACT

Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.


Subject(s)
Colloids , Laboratories , Electricity , Phase Transition , Water
3.
J Phys Chem Lett ; 11(4): 1370-1376, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31999463

ABSTRACT

A significant number of key properties of condensed matter are determined by the spectra of elementary excitations and, in particular, collective vibrations. However, the behavior and description of collective modes in disordered media (e.g., liquids and glasses) remains a challenging area of modern condensed matter science. Recently, anticrossing between longitudinal and transverse modes was predicted theoretically and observed in molecular dynamics simulations, but this fundamental phenomenon has never been observed experimentally. Here we demonstrate the mode anticrossing in a simple Yukawa fluid constructed from charged microparticles in weakly ionized gas. Theory, simulations, and experiments show clear evidence of mode anticrossing that is accompanied by mode hybridization and strong redistribution of the excitation spectra. Our results provide a significant advance in understanding excitations of fluids, opening new perspectives for studies of dynamics, thermodynamics, and transport phenomena in a wide variety of systems from noble-gas fluids and metallic melts to strongly coupled plasmas and molecular and complex fluids.

4.
Phys Rev E ; 100(2-1): 023203, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574655

ABSTRACT

Defects play a crucial role in physics of solids, affecting their mechanical, electromagnetic, and chemical properties. However, influence of thermal defects on wave propagation in exothermic reactions (flame fronts) still remains poorly understood at the molecular level. Here, we show that thermal behavior of the defects exhibits essential features of double-step exothermic reactions with preequilibrium. We use experiments with monolayer complex (dusty) plasma and find that it can show a double-step activation thermal behavior, similar to chemically reactive media. Furthermore, we demonstrate capabilities to control flame fronts using defects and the different dynamic regimes of the thermal defects in complex (dusty) plasmas, from a nonactivated one to being sound and self-activated (like in active soft matter). The results suggest that a range of challenging phenomena at the forefront of modern science (e.g., defect activation, flame front dynamics, reaction waves, etc.) can now be experimentally interrogated on a microscopic scale.

5.
J Chem Phys ; 151(11): 114502, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31542035

ABSTRACT

Accurate analysis of pair correlations in condensed matter allows us to establish relations between structures and thermodynamic properties and, thus, is of high importance for a wide range of systems, from solids to colloidal suspensions. Recently, the interpolation method (IM) that describes satisfactorily the shape of pair correlation peaks at short and at long distances has been elaborated theoretically and using molecular dynamics simulations, but it has not been verified experimentally as yet. Here, we test the IM by particle-resolved studies with colloidal suspensions and with complex (dusty) plasmas and demonstrate that, owing to its high accuracy, the IM can be used to experimentally measure parameters that describe interaction between particles in these systems. We used three- and two-dimensional colloidal crystals and monolayer complex (dusty) plasma crystals to explore suitability of the IM in systems with soft to hard-sphere-like repulsion between particles. In addition to the systems with pairwise interactions, if many-body interactions can be mapped to the pairwise ones with some effective (e.g., density-dependent) parameters, the IM could be used to obtain these parameters. The results reliably show that the IM can be effectively used for analysis of pair correlations and interactions in a wide variety of systems and therefore is of broad interest in condensed matter, complex plasma, chemical physics, physical chemistry, materials science, and soft matter.

6.
Phys Rev Lett ; 121(7): 075003, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169052

ABSTRACT

Thermoacoustic instability in a fluid monolayer complex plasma is studied for the first time. Experiments, theory, and simulations demonstrate that nonreciprocal effective interactions between particles (mediated by plasma flows) provide positive thermal feedback leading to acoustic sound amplification. The form of the generated sound spectra obtained both in experiments and simulations excellently agrees with theory, justifying thermoacoustic instability in the fluid complex plasma. The results indicate a physical analogy between collective fluctuation dynamics in reactive media and in systems with nonreciprocal effective interactions exposing an activation behavior.

7.
Sci Rep ; 7(1): 13727, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29062107

ABSTRACT

Tunable interparticle interactions in colloidal suspensions are of great interest because of their fundamental and practical significance. In this paper we present a new experimental setup for self-assembly of colloidal particles in two-dimensional systems, where the interactions are controlled by external rotating electric fields. The maximal magnitude of the field in a suspension is 25 V/mm, the field homogeneity is better than 1% over the horizontal distance of 250 µm, and the rotation frequency is in the range of 40 Hz to 30 kHz. Based on numerical electrostatic calculations for the developed setup with eight planar electrodes, we found optimal experimental conditions and performed demonstration experiments with a suspension of 2.12 µm silica particles in water. Thanks to its technological flexibility, the setup is well suited for particle-resolved studies of fundamental generic phenomena occurring in classical liquids and solids, and therefore it should be of interest for a broad community of soft matter, photonics, and material science.

SELECTION OF CITATIONS
SEARCH DETAIL
...