Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Cells Mol Dis ; 33(3): 238-47, 2004.
Article in English | MEDLINE | ID: mdl-15528138

ABSTRACT

OBJECTIVE: Successful implantation of allogeneic bone marrow (BM) cells after nonmyeloablative conditioning would allow to compensate for the inadequate supply of compatible grafts and to reduce mortality of graft-vs.-host disease (GVHD). Recently, we proposed to facilitate engraftment of mismatched BM by conditioning for alloantigen-primed lymphocyte depletion (APLD) with cyclophosphamide (CY). Here we summarize the experimental results obtained by this approach. MATERIALS AND METHODS: Naive or mildly irradiated BALB/c mice were primed with C57BL/6 BM cells (day 0), treated with CY (day 1) to deplete alloantigen-primed lymphocytes, and given a second C57BL/6 BM transplant (day 2) for engraftment. Recipients were repeatedly tested for chimerism in the blood and followed for GVHD and survival. The protocol was also tested for inducing tolerance to donor tissue and organ allografts, and for treatment of leukemia, breast cancer, and autoimmune diabetes in NOD mice. RESULTS: APLD by 200 mg/kg CY provided engraftment of allogeneic BM from the same donor in 100% mildly irradiated recipients. Eighty percent chimeras remained GVHD-free more 200 days. All chimeras accepted permanently donor skin grafts and donor hematopoietic stromal progenitors. Allogeneic BM transplantation (BMT) after APLD had a strong therapeutic potential in BALB/c mice harboring malignant cells and in autoimmune NOD recipients. Tolerance-inducing CY dose could be reduced to 100 mg/kg. Conditioning for APLD resulted in engraftment of allogeneic BM after a significantly lower radiation dose than treatment with radiation and CY alone. CONCLUSION: Our results demonstrate that conditioning for APLD has a definite advantage over general immunosuppression with CY and radiation therapy.


Subject(s)
Bone Marrow Transplantation , Bone Marrow/immunology , Graft Survival/immunology , Lymphocytes/immunology , Transplantation Conditioning/methods , Animals , Mice , Mice, Inbred Strains , Transplantation, Homologous
2.
Exp Hematol ; 31(1): 81-8, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12543110

ABSTRACT

OBJECTIVES: We previously demonstrated that allogeneic bone marrow transplantation (BMT) after low-dose total lymphoid irradiation (200 cGy) and depletion of donor-reactive cells with cyclophosphamide (Cy) converted recipients to graft-vs-host disease (GVHD)-free chimeras tolerant to donor skin grafts. BMT also generated strong graft-vs-leukemia (GVL) response. However, clinical application of the protocol was hampered by the requirement for a relatively high dose of Cy (200 mg/kg). In this study we have tried to minimize the Cy dose by a concomitant blockade of CD40-CD40L interaction. MATERIALS AND METHODS: Mildly irradiated BALB/c mice were primed with C57BL/6 BM cells (BM(1)) and skin graft on day 0, injected with Cy (200 mg/kg or less) on day 1, and transplanted with a second C57BL/6 BM cell inoculum (BM(2)) on day 2. CD40L-specific antibody (MR1) was given with BM(1), BM(2), and 2 days later. Treated animals were monitored for survival, chimerism, and skin allograft rejection. The GVL potential of transplanted cells was examined in mice inoculated with BCL1 leukemia cells before irradiation. RESULTS: Blocking CD40-CD40L interaction with MR1 mAb allowed the reduction of a tolerance-generating Cy dose by 50%. Unfortunately, adding MR1 to the protocol reduced the GVL potential of the transplanted cells. Neither low-dose Cy nor antibodies alone could downregulate donor or recipient immune response. CONCLUSIONS: CD40L-specific antibodies synergize with Cy to induce bilateral transplantation tolerance. Therefore, their use may be beneficial for safer allogeneic BMT for nonmalignant indications. However, due to MR1-associated reduction of GVL effects, MR1 should be considered with caution as conditioning for BMT for leukemia-bearing recipients.


Subject(s)
Antibodies, Monoclonal/pharmacology , Bone Marrow Transplantation , CD40 Ligand/immunology , Cyclophosphamide/pharmacology , Graft vs Leukemia Effect/drug effects , Immunosuppressive Agents/pharmacology , Lymphocyte Depletion/methods , Abatacept , Animals , CD40 Antigens/immunology , Drug Synergism , Graft Enhancement, Immunologic , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunosuppressive Agents/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Radiation Chimera , Safety , Skin Transplantation , Transplantation, Homologous/immunology
3.
Exp Hematol ; 30(1): 89-96, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11823042

ABSTRACT

OBJECTIVE: We previously demonstrated that a combination of mild total lymphoid irradiation (TLI) with selective depletion of the host's donor-reactive cells allows for stable and graft-vs-host disease (GVHD)-free engraftment of allogeneic bone marrow (BM). In this study, we investigated the efficacy of this nonmyeloablative strategy for BM transplantation (BMT) as immunotherapy for minimal residual disease. MATERIALS AND METHODS: BALB/c mice inoculated with leukemia (BCL1) or breast carcinoma (4T1) cells were conditioned for BMT with TLI (200 cGy) followed by priming with donor (C57BL/6) BM cells on day 1, and by injection with 200 mg/kg cyclophosphamide on day 2. After conditioning (day 3), recipients were transplanted with BM cells from the same donor. Treated animals were monitored for 230 days for survival, development of leukemia/solid tumor, and GVHD. RESULTS: BMT converted the mice to complete chimeras and prevented development of leukemia in 90% of recipients and locally growing breast carcinoma in 40% of the mice. Immunization of donors of the second BM with 4T1 cells prevented development of breast carcinoma in 80% of 4T1 inoculated mice. Fewer animals treated for malignancy by nonmyeloablative BMT died of GVHD than those treated by myeloablative BMT. However, late GVHD-related mortality in mice treated for leukemia was higher than after nonmyeloablative BMT to naive recipients (p < 0.00001). Infusion of host-type anti-donor immune lymphocytes 8 days after BMT improved the survival of recipients treated for leukemia without affecting engraftment and the graft-vs-leukemia potential of donor BM. CONCLUSIONS: Effective eradication of malignant cells can be achieved following allogeneic BMT after nonmyeloablative conditioning.


Subject(s)
Bone Marrow Transplantation , Immunotherapy , Leukemia, Experimental/therapy , Mammary Neoplasms, Experimental/therapy , Transplantation Conditioning , Animals , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Female , Graft Survival , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Leukemia, Experimental/immunology , Leukemia, Experimental/pathology , Leukemia, Experimental/radiotherapy , Lymph Nodes/radiation effects , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/radiotherapy , Mice , Mice, Inbred BALB C , Neoplasm, Residual/therapy , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...