Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3008, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32546736

ABSTRACT

The toxicity of lead perovskite hampers the commercialization of perovskite-based photovoltaics. While tin perovskite is a promising alternative, the facile oxidation of tin(II) to tin(IV) causes a high density of defects, resulting in lower solar cell efficiencies. Here, we show that tin(0) nanoparticles in the precursor solution can scavenge tin(IV) impurities, and demonstrate that this treatment leads to effectively tin(IV)-free perovskite films with strong photoluminescence and prolonged decay lifetimes. These nanoparticles are generated by the selective reaction of a dihydropyrazine derivative with the tin(II) fluoride additive already present in the precursor solution. Using this nanoparticle treatment, the power conversion efficiency of tin-based solar cells reaches 11.5%, with an open-circuit voltage of 0.76 V. Our nanoparticle treatment is a simple and broadly effective method that improves the purity and electrical performance of tin perovskite films.

2.
Angew Chem Int Ed Engl ; 58(28): 9389-9393, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31033135

ABSTRACT

A high-purity methylammonium lead iodide complex with intercalated dimethylformamide (DMF) molecules, CH3 NH3 PbI3 ⋅DMF, is introduced as an effective precursor material for fabricating high-quality solution-processed perovskite layers. Spin-coated films of the solvent-intercalated complex dissolved in pure dimethyl sulfoxide (DMSO) yielded thick, dense perovskite layers after thermal annealing. The low volatility of the pure DMSO solvent extended the allowable time for low-speed spin programs and considerably relaxed the precision needed for the antisolvent addition step. An optimized, reliable fabrication method was devised to take advantage of this extended process window and resulted in highly consistent performance of perovskite solar cell devices, with up to 19.8 % power-conversion efficiency (PCE). The optimized method was also used to fabricate a 22.0 cm2 , eight-cell module with 14.2 % PCE (active area) and 8.64 V output (1.08 V/cell).

3.
Angew Chem Int Ed Engl ; 57(40): 13221-13225, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30110137

ABSTRACT

Two simple methods to improve tin halide perovskite film structure are introduced, aimed at increasing the power conversion efficiency of lead free perovskite solar cells. First, a hot antisolvent treatment (HAT) was found to increase the film coverage and prevent electrical shunting in the photovoltaic device. Second, it was discovered that annealing under a low partial pressure of dimethyl sulfoxide vapor increased the average crystallite size. The topographical and electrical qualities of the perovskite films are substantively improved as a result of the combined treatments, facilitating the fabrication of tin-based perovskite solar cell devices with power conversion efficiencies of over 7 %.

4.
ACS Omega ; 2(10): 7016-7021, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-31457283

ABSTRACT

A series of solvent-coordinated tin halide complexes were prepared as impurity-free precursors for tin halide perovskites, and their structures were determined by single-crystal X-ray diffraction analysis. Using these precursors, the tin halide perovskites, MASnI3 and FASnI3, were prepared, and their electronic structures and photophysical properties were examined under inert conditions by means of photoelectron yield spectroscopy as well as absorption and fluorescence spectroscopies. Their valence bands (MASnI3: -5.02 eV; FASnI3: -5.16 eV) are significantly higher than those of MAPbI3 or the typical hole-transporting materials 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene and poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine). These results suggest that to develop the solar cells using these tin halide perovskites with efficient hole-collection properties, hole-transporting materials should be chosen that have the highest occupied molecular orbital levels higher than -5.0 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...