Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 916: 170140, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38244618

ABSTRACT

Shallow lake ecosystems are particularly prone to disturbances such as pulsed dissolved organic matter (allochthonous-DOM; hereafter allo-DOM) loadings from catchments. However, the effects of allo-DOM with contrasting quality (in addition to quantity) on the planktonic communities of microbial loop are poorly understood. To determine the impact of different qualities of pulsed allo-DOM disturbance on the coupling between bacteria and ciliates, we conducted a mesocosm experiment with two different allo-DOM sources added to mesocosms in a single-pulse disturbance event: Alder tree leaf extract, a more labile (L) source and HuminFeed® (HF), a more recalcitrant source. Allo-DOM sources were used as separate treatments and in combination (HFL) relative to the control without allo-DOM additions (C). Our results indicate that the quality of allo-DOM was a major regulator of planktonic microbial community biomass and/or composition through which both bottom-up and top-down forces were involved. Bacteria biomass showed significant nonlinear responses in L and HFL with initial increases followed by decreases to pre-pulse conditions. Ciliate biomass was significantly higher in L compared to all other treatments. In terms of composition, bacterivore ciliate abundance was significantly higher in both L and HFL treatments, mainly driven by the bacterial biomass increase in the same treatments. GAMM models showed negative interaction between metazoan zooplankton biomass and ciliates, but only in the L treatment, indicating top-down control on ciliates. Ecosystem stability analyses revealed overperformance, high resilience and full recovery of bacteria in the HFL and L treatments, while ciliates showed significant shift in compositional stability in HFL and L with incomplete taxonomic recovery. Our study highlights the importance of allo-DOM quality shaping the response within the microbial loop not only through triggering different scenarios in biomass, but also the community composition, stability, and species interactions (top-down and bottom-up) in bacteria and plankton.


Subject(s)
Ecosystem , Lakes , Animals , Lakes/microbiology , Dissolved Organic Matter , Bacteria , Biomass , Plankton
2.
Sci Total Environ ; 836: 155407, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35469887

ABSTRACT

The ubiquitous presence of microplastics (MP) in aquatic ecosystems can affect organisms and communities in multiple ways. While MP research on aquatic organisms has primarily focused on marine ecosystems and laboratory experiments, the community-level effects of MP in freshwaters, especially in lakes, are poorly understood. To examine the impact of MP on freshwater lake ecosystems, we conducted the first in situ community-level mesocosm experiment testing the effects of MP on a model food web with zooplankton as main herbivores, odonate larvae as predators, and chironomid larvae as detritivores for seven weeks. The mesocosms were exposed to a mixture of the most abundant MP polymers found in freshwaters, added at two different concentrations in a single pulse to the water surface, water column and sediment. Water column MP concentrations declined sharply during the first two weeks of the experiment. Contrary to expectations, MP ingestion by zooplankton was low and limited mainly to large-bodied Daphnia, causing a decrease in biomass. Biomass of the other zooplankton taxa did not decrease. Presence of MP in the faecal pellets of odonate larvae that fed on zooplankton was indicative of a trophic transfer of MP. The results demonstrated that MP ingestion varies predictably with MP size, as well as body size and feeding preference of the organism, which can be used to predict the rates of transfer and further effects of MP on freshwater food webs. For chironomids, MP had only a low, short-term impact on emergence patterns while their wing morphology was significantly changed. Overall, the impact of MP exposure on the experimental food web and cross-ecosystem biomass transfer was lower than expected, but the experiment provided the first in situ observation of MP transfer to terrestrial ecosystems by emerging chironomids.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Ecosystem , Food Chain , Lakes , Plastics , Water , Water Pollutants, Chemical/analysis , Zooplankton
3.
Environ Pollut ; 262: 114248, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32169725

ABSTRACT

The effect of microplastics (MP) exposure on the chironomid species Chironomus riparius Meigen, 1804 was investigated using the OECD sediment and water toxicity test. Chironomid larvae were exposed to an environmentally relevant low microplastics concentration (LC), a high microplastics concentration (HC) and a control (C). The LC was 0.007 g m-2 on the water surface + 2 g m-3 in the water column + 8 g m-2 in the sediment, and the HC was 10 X higher than this for each exposure. The size of the majority of the manufactured microplastic pellets varied between 20 and 100 µm. The MP mixture consisted of: polyethylene-terephtalate (PET), polystyrene (PS), polyvinyl-chloride (PVC) and polyamide (PA) in a ratio of 45%: 15%: 20%: 20%, respectively, for the sediment exposure; 100% polyethylene for the water column exposure; and 50% polyethylene: 50% polypropylene for the water surface exposure. Different endpoints were monitored, including morphological changes in the mandibles and mentums of 4th instar larvae, morphological changes in the wings, mortality, emergence ratio, and developmental time. A geometric morphometric analysis showed a tendency toward widening of the wings, elongation of the mentums and changing the shape of the mandibles in specimens exposed to both concentrations of microplastics. The development time of C. riparius was significantly prolonged by the MP treatment: 13.8 ± 0.5; 14.4 ± 0.6; and 15.3 ± 0.4 days (mean ± SD) in the C, LC, and HC, respectively. This study indicates that even environmentally relevant concentrations of MP mixture have a negative influence on C. riparius, especially at the larval stage.


Subject(s)
Chironomidae , Water Pollutants, Chemical/analysis , Animals , Larva , Microplastics , Plastics
SELECTION OF CITATIONS
SEARCH DETAIL
...