Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1132555, 2023.
Article in English | MEDLINE | ID: mdl-37457343

ABSTRACT

Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.

2.
Environ Monit Assess ; 195(5): 536, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37010616

ABSTRACT

This paper aims to predict heavy metal pollution based on ecological factors with a new approach, using artificial neural networks (ANNs), by significantly removing typical obstacles like time-consuming laboratory procedures and high implementation costs. Pollution prediction is crucial for the safety of all living things, for sustainable development, and for policymakers to make the right decisions. This study focuses on predicting heavy metal contamination in an ecosystem at a significantly lower cost because pollution assessment still primarily relies on conventional methods, which are recognized to have disadvantages. To accomplish this, the data collected for 800 plant and soil materials have been utilized in the production of an ANN. This research is the first to use an ANN to predict pollution very accurately and has found the network models to be very suitable systemic tools for modelling in pollution data analysis. The findings appear are promising to be very illuminating and pioneering for scientists, conservationists, and governments to swiftly and optimally develop their appropriate work programs to leave a functioning ecosystem for all living things. It has been observed that the relative errors calculated for each of the polluting heavy metals for training, testing, and holdout data are significantly low.


Subject(s)
Metals, Heavy , Soil Pollutants , Ecosystem , Soil Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Soil , Risk Assessment , China , Cadmium/analysis
3.
Int J Phytoremediation ; 25(14): 1859-1880, 2023.
Article in English | MEDLINE | ID: mdl-37118908

ABSTRACT

Arundo donax and Phragmites australis were examined in 4 different periods (June and October for 2 years), heavy metal and mineral element accumulations in plants were evaluated, and water-soil-plant relationships were revealed. Element distributions, bioaccumulation factors (BAF) and translocation factors (TF) in different parts of the investigated plant species were also determined. BAFs of elements calculated by using the concentration values in underground parts and sediment samples were between 1.02 and 4.96. While the highest TF was determined as 8.07 for Zn between washed leaf and stem in A. donax, the lowest TF was determined as 0.05 for Fe between stem and underground part. Corresponding highest and lowest TFs for P. australis were 11.80 for Cu between washed leaf and stem, and 0.02 for Fe between stem and underground part, respectively. The results were supported by MANOVA statistical analyzes. Additionally, the macro-micro elements and heavy metal accumulation levels in the parts of the Orontes River ecosystem were significantly higher in the fall periods compared to the spring periods. Our research revealed that the versatile accumulation properties and high accumulation ability of A. donax for Cd, Cr, and Ni and of P. australis for Cd, Co, Cu, Ni, Pb, and Zn.


The Orontes River passes through the regions of three different countries with high population density and developed economies. This study presents the current state of the relationship between the element types and their concentrations in the sediments in the Orontes River ecosystem and the ecophysiological parameters of the river. In this study, the focus was on the Türkiye-Hatay region of the Orontes River, the water-soil-plant relationship in this region was revealed in detail, and valuable data were compiled for researchers who will conduct research on the river ecophysiology.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium , Ecosystem , Rivers , Water , Soil , Environmental Monitoring/methods , Biodegradation, Environmental , Metals, Heavy/analysis , Plants , Poaceae , Water Pollutants, Chemical/analysis
4.
Int J Phytoremediation ; 25(1): 89-97, 2023.
Article in English | MEDLINE | ID: mdl-35400247

ABSTRACT

This research is to predict heavy metal levels in plants, particularly in Robinia pseudoacacia L., and soils using an effective artificial intelligence approach with some ecological parameters, thereby significantly eliminating common defects such as high cost and seriously tedious and time-consuming laboratory procedures. In this respect, the artificial neural network (ANN) is employed to estimate the concentrations of essential heavy metals such as Fe, Mn and Ni, depending on the Cu and Zn concentrations of plant and soil samples collected from five different locations. The derived relative errors for the constructed ANN model have been computed within the ranges 0.041-0.051, 0.017-0.025, and 0.026-0.029 for the training, testing and holdout data regarding Fe, Mn, and Ni, respectively. In addition, it has been realized that the relative errors could be diminished up to 0.007 for Fe, 0.014 for Mn and 0.022 for Ni by considering the Cu, Zn, location and plant parts as independent variables during the analysis. The results produced seem instructive and pioneering for environmentalists and scientists to design optimal study programs to leave a livable ecosystem.


The levels of essential heavy metals, Fe, Mn, Ni, based on Zn and Cu in plant and soil samples have been predicted through an AI-based prediction model, a class of feedforward artificial neural networks (ANNs) with a multilayer perceptron (MLP). Thereby common drawbacks such as high cost and severely time-consuming laboratory procedures have been significantly eradicated. In the evaluation of different pollution levels at locations, it has been shown that the ANN method can overcome several disadvantages of analytical element analyzers to monitor the amounts of heavy metals such as Fe, Mn, and Ni in soil and plants.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Monitoring/methods , Artificial Intelligence , Ecosystem , Soil Pollutants/analysis , Biodegradation, Environmental , Neural Networks, Computer , Soil , Metals, Heavy/analysis
5.
Biol Trace Elem Res ; 200(4): 1902-1916, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34050455

ABSTRACT

Intensive production of fruits and vegetables causes heavy metal accumulation. Consumption of this kind of foodstuff is a growing concern of the modern world with the additional distress of the supply of enough foodstuffs. To contribute to this global purpose, this research aimed to find out the mineral nutrient and heavy metal concentrations of commonly consumed fruity vegetables in Kyrgyzstan. Totally, ten different fruity type vegetables were collected from five different large bazaars of Kyrgyzstan. From these, 20 samples, including washed/unwashed rinds of vegetables, were quantified in terms of their B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn contents by using inductively coupled plasma-optical emission spectrometry (ICP-OES). The concentrations of the fruity vegetables were found in the following range: B (1.392-25.816), Ca (92.814-4095.466), Cd (0.007-0.086), Cr (0.009-0.919), Cu (0.351-8.351), Fe (4.429-126.873), K (920.124-10,135.995), Mg (61.973-879.085), Mn (1.113-78.938), Na (36.132-266.475), Ni (0.039-1.215), Pb (0.081-2.906), and Zn (1.653-87.107) (mg kg-1). It was determined that red capia pepper was the vegetable having the highest daily nutritional value according to evaluation done in our study. Taking into account of the HI values, all of the vegetables analyzed were determined to be lower than the limit value of 1 that falls into acceptable limits in terms of being safe. Peppers demonstrated the highest variation in terms of the elemental content. The high Cr content rendered hot pepper risky for consumption by both genders regarding with CR, and in terms of CR, it has been observed that nickel contents being found in vegetables including tomatoes pose a moderate risk for consumption. Quite lower risk was detected in red/Brandy-wine tomatoes, eggplants, and cucumber for both genders. As most striking result in our study, the Brandy-wine type tomato was found to be healthiest (as well as safest) and nutritious vegetable looking from the viewpoint of consumption in Kyrgyzstan.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Monitoring , Fruit/chemistry , Kyrgyzstan , Metals, Heavy/analysis , Minerals/analysis , Multidimensional Scaling Analysis , Nutrients , Risk Assessment , Soil Pollutants/analysis , Vegetables/chemistry
6.
Int J Phytoremediation ; 23(12): 1255-1269, 2021.
Article in English | MEDLINE | ID: mdl-33662215

ABSTRACT

In this study, to determine whether having potential to be used as hyperaccumulator for Cd and Ni, numerous experiments were designed for conducting assessments for physiological and genotoxic changes along with defining possible alterations on mineral nutrient status of Lemna minor L. by applying Cd-Ni binary treatments (0, 100, 200 and 400 µM). Our study revealed that there were increases in the concentrations of B, Cr, Fe, K, Mg, and Mn whereas decreases were noticed in the concentrations of Na and Zn and the levels of Ca were inversely proportional to Cd-Ni applications showing tendency to increase at the low concentration and to decrease at the high concentration. Randomly Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) analyses revealed that rather than band losses and new band formations, mostly intensity changes in the band profiles, and low polymorphism and high genomic template stability (GTS) were observed. Although, to date, L. minor was defined as an efficient hyperaccumulator/potential accumulator or competent phytoremedial agent by researchers. Our research revealed that L. minor showing high accumulation capability for Cd and having low polymorphism rate and high genomic template stability is a versatile hyperaccumulator, especially for Cd; therefore, highly recommended by us for decontamination of water polluted with Cd. NOVELTY STATEMENTMany studies have been focused on the effects of individual metal ions. However, heavy metal contaminants usually exist as their mixtures in natural aquatic environments. Especially, Cd and Ni coexist in industrial wastes.In this study, the accumulation properties of Lemna minor for both Cd and Ni were investigated and the effects of Cd and Ni on the bioaccumulation of B, Ca, Cu, Fe, Mg, K, Mn, Na, Pb and Zn in L. minor were also determined. This study furthermore aimed to assess the genotoxic effects of Cd and Ni found in being extended concentrations on DNA using the Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) method.


Subject(s)
Araceae , Metals, Heavy , Araceae/genetics , Biodegradation, Environmental , Cadmium , Environmental Monitoring , Genomics , Metals, Heavy/analysis , Random Amplified Polymorphic DNA Technique
7.
Biol Trace Elem Res ; 199(3): 1123-1144, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32557099

ABSTRACT

Leafy vegetables are important components of the human diet for providing mineral nutrients. However, due to the tendency of metal accumulation, metal contents of leafy vegetables need not only to be determined but also estimated health risk for revealing possible health effects on humans. The aims of this study are (I) to examine comprehensive concentrations of trace/heavy metals along with some macroelements including Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn in selected leafy vegetables from Kyrgyzstan; (II) to assess recommended dietary allowances (RDA); and (III) to evaluate hazard quotient (HQ) and carcinogenic risk estimation with associated vegetable consumption. For this purpose, B, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn elements were quantified, utilizing an ICP-OES instrument, in 18 samples belonging to 12 different groups of leafy vegetables including celery, Chinese parsley, dill, garden sorrel, lettuce, parsley, purple basil, spinach, and white-red-napa cabbage collected from different bazaars of Kyrgyzstan. Average elemental contents of the analyzed vegetables were determined (in mg kg-1) as follows: B (3.21-64.79), Ca (852.51-17,183.20), Cd (0.015-0.09), Cu (6.08-63.47), Fe (116.52-768.66), K (2347.04-17,305.42), Mg (136.34-1261.11), Na (54.75-526.42), Ni (0.09-1.3), Pb (1.91-9.54), and Zn (29.49-314.93). Estimated daily intake, recommended daily allowance, hazard quotients, and carcinogenic risk values of the vegetables were calculated with the help of these results. In considering HQ values, Chinese cabbage was determined to be safe for the consumption of both genders whereas parsley to be safe for only males. Based on the carcinogenic risk calculation, most of the vegetables examined in this study were categorized as moderately risky. It was inferred from the given results that airborne pollution has impaired/increased the mineral contents of vegetables for both genders. The findings obtained from this study were compared with international standards and will contribute to the data available on a global scale.


Subject(s)
Metals, Heavy , Soil Pollutants , Trace Elements , Environmental Monitoring , Female , Humans , Kyrgyzstan , Male , Metals, Heavy/analysis , Minerals , Risk Assessment , Soil Pollutants/analysis , Trace Elements/analysis , Vegetables
8.
Turk J Chem ; 44(4): 1177-1199, 2020.
Article in English | MEDLINE | ID: mdl-33488221

ABSTRACT

The objective of this study is to synthesize ZnO and Mg doped ZnO (Zn1-xMgxO) nanoparticles via the sol-gel method, and characterize their structures and to investigate their biological properties such as antibacterial activity and hemolytic potential.Nanoparticles (NPs) were synthesized by the sol-gel method using zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and magnesium acetate tetrahydrate (Mg(CH3COO)2.4H2O) as precursors. Methanol and monoethanolamine were used as solvent and sol stabilizer, respectively. Structural and morphological characterizations of Zn1-xMgxO nanoparticles were studied by using XRD and SEM-EDX, respectively. Photocatalytic activities of ZnO and selected Mg-doped ZnO (Zn1-xMgxO) nanoparticles were investigated by degradation of methylene blue (MeB). Results indicated that Mg doping (both 10% and 30%) to the ZnO nanoparticles enhanced the photocatalytic activity and a little amount of Zn0.90 Mg0.10 O photocatalyst (1.0 mg/mL) degraded MeB with 99% efficiency after 24 h of irradiation under ambient visible light. Antibacterial activity of nanoparticles versus Escherichia coli ( E. coli ) was determined by the standard plate count method. Hemolytic activities of the NPs were studied by hemolysis tests using human erythrocytes. XRD data proved that the average particle size of nanoparticles was around 30 nm. Moreover, the XRD results indicatedthat the patterns of Mg doped ZnO nanoparticles related to ZnO hexagonal wurtzite structure had no secondary phase for x ≤ 0.2 concentration. For 0 ≤ x ≤ 0.02, NPs showed a concentration dependent antibacterial activity against E. coli . While Zn0.90Mg0.10 O totally inhibited the growth of E. coli , upper and lower dopant concentrations did not show antibacterial activity.

9.
Biol Trace Elem Res ; 197(1): 316-329, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31758293

ABSTRACT

Medicinal plants have been used for treatment of many diseases since the ancient times with traditional knowledge being transferred from generation to generation. However, in recent years, many natural habitats have been contaminated due to increased anthropogenic activities. Plants which are exposed to heavy metal toxicity may experience several serious problems. Furthermore, the inclusion of these plants into the food chain poses a threat to human health as well. Additionally, presence of heavy metals directly effect mineral nutrition and consequently the food quality. The aim of this study herewith is to determine the heavy metal content and mineral nutrient status of some medicinal plants to have insight on their health repercussions on plants and humans. The concentrations of Al, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn in commonly used parts (root, rhizome, seed, resin, gall, fruit) especially for remedial purposes of 17 medicinal plants collected from Turkey were analyzed by ICP-OES. The measured values for concentrations from lowest to highest were (in mg kg-1) 30.983-368.877 for Al, 13.845-186.015 for B, 1335.699-11213.951 for Ca, 0.016-0.653 for Cd, 0.379-30.708 for Cr, 23.838-90.444 for Cu, 78.960-1228.845 for Fe, 1035.948-6393.491 for K, 83.193-2252.031 for Mg, 12.111-362.570 for Mn, 278.464-1968.775 for Na, 1.945-35.732 for Ni, 0.796-17.162 for Pb and 166.910-395.252 for Zn. Overall, heavy metal concentrations in medicinal plants collected nearby industrial regions, mining and farming sites, were found to be in slightly higher levels. This shows us that it is of crucial importance that the areas where medicinal plants are collected are clean especially by means of heavy metals for the reason that these plants can cause more harm than the benefits they may provide if they are contaminated.


Subject(s)
Metals, Heavy , Plants, Medicinal , Soil Pollutants , Environmental Monitoring , Humans , Mediterranean Region , Metals, Heavy/analysis , Minerals , Nutrients , Soil Pollutants/analysis , Turkey
10.
Biol Trace Elem Res ; 189(1): 277-290, 2019 May.
Article in English | MEDLINE | ID: mdl-30146669

ABSTRACT

In this study, mineral nutrient and heavy metal (Al, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) contents of the walnut kernels and their co-located soil samples collected from the four different zones of natural walnut forests (Sary-Chelek, Arslanbap, and Kara-Alma in Jalal-Abad Region and Kara-Shoro in Osh Region) in Kyrgyzstan were investigated. The highest concentrations for all elements determined in the soil samples were observed in the Sary-Chelek zone whereas the Arslanbap zone was found to be having the lowest concentrations except Fe and Zn. The highest concentrations in the kernels of walnut samples were found to be in the Sary-Chelek zone for Ca, Fe, K, Mg, and Zn; in the Kara-Shoro zone for Cu; in the Arslanbap zone for Mn; and in the Kara-Alma zone for Na whereas the lowest concentrations were found to be in the Arslanbap zone for Ca, Fe, K, Mg, Na, and Zn and in the Sary-Chelek zone for Cu and Mn, respectively. Also, the levels of Al, Cd, Ni, and Pb in kernel samples could not be detected by ICP-OES because their levels were lower than the threshold detection point (10 µg.kg-1). Additionally, our data indicated that the walnut kernels from Kyrgyzstan have higher values for RDA (recommended daily allowances) in comparison with the walnut kernels from other countries.


Subject(s)
Juglans/chemistry , Metals, Heavy/analysis , Minerals/chemistry , Environmental Monitoring
11.
Biol Trace Elem Res ; 182(2): 387-406, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28726073

ABSTRACT

The use of plants in treatments has been as old as humanity and it has preserved its popularity for centuries til now because of their availability, affordability and safeness. However, despite their widespread use, safety and quality issues have been major concerns in the world due to industrial- and anthropogenic-based heavy metal contamination risks. Thus, this study was attempted to analyze the heavy metal levels and mineral nutrient status of widely used medicinal plants in Turkey to have insights about their health implications on humans. The plant concentrations of B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn were analyzed by ICP-OES in the leaves of 44 medical plants purchased from herbal markets of three different districts of Istanbul/Turkey. The measured lowest to highest concentrations were 0.065-79.749 mg kg-1 B, 921.802-12,854.410 mg kg-1 Ca, 0.020-0.558 mg kg-1 Cd, 0.015-4.978 mg kg-1 Cr, 0.042-8.489 mg kg-1 Cu, 34.356-858.446 mg kg-1 Fe, 791.323-15,569.349 mg kg-1 K, 102.236-2837.836 mg kg-1 Mg, 4.915-91.519 mg kg-1 Mn, 10.224-3213.703 mg kg-1 Na, 0.001-5.589 mg kg-1 Ni, 0.003-3.636 mg kg-1 Pb and 2.601-36.102 mg kg-1 Zn. Those levels in plants were in acceptable limits though some elements in some plants have high limits which were not harmful. Variations (above acceptable limits) in element concentrations also indicated that these plants could be contaminated with other metals and that genetic variations may influence accumulation of these elements at different contents. Overall, analyzed medicinal plants are expected not to pose any serious threat to human health.


Subject(s)
Metals, Heavy/analysis , Minerals/analysis , Plant Leaves/chemistry , Environmental Monitoring/methods , Humans , Metals, Heavy/metabolism , Minerals/metabolism , Phytotherapy/methods , Plants, Medicinal/chemistry , Reference Values , Spectrophotometry, Atomic , Turkey
12.
Biol Trace Elem Res ; 151(2): 256-62, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23179348

ABSTRACT

We evaluated the effect of zinc treatment on the blood-brain barrier (BBB) permeability and the levels of zinc (Zn), natrium (Na), magnesium (Mg), and copper (Cu) in the brain tissue during epileptic seizures. The Wistar albino rats were divided into four groups, each as follows: (1) control group, (2) pentylenetetrazole (PTZ) group: rats treated with PTZ to induce seizures, (3) Zn group: rats treated with ZnCl(2) added to drinking water for 2 months, and (4) Zn + PTZ group. The brains were divided into left, right hemispheres, and cerebellum + brain stem regions. Evans blue was used as BBB tracer. Element concentrations were analyzed by inductively coupled plasma optical emission spectroscopy. The BBB permeability has been found to be increased in all experimental groups (p < 0.05). Zn concentrations in all brain regions in Zn-supplemented groups (p < 0.05) showed an increase. BBB permeability and Zn level in cerebellum + brain stem region were significantly high compared to cerebral hemispheres (p < 0.05). In all experimental groups, Cu concentration decreased, whereas Na concentrations showed an increase (p < 0.05). Mg content in all the brain regions decreased in the Zn group and Zn + PTZ groups compared to other groups (p < 0.001). We also found that all elements' levels showed hemispheric differences in all groups. During convulsions, Zn treatment did not show any protective effect on BBB permeability. Chronic Zn treatment decreased Mg and Cu concentration and increased Na levels in the brain tissue. Our results indicated that Zn treatment showed proconvulsant activity and increased BBB permeability, possibly changing prooxidant/antioxidant balance and neuronal excitability during seizures.


Subject(s)
Blood-Brain Barrier/drug effects , Chlorides/pharmacology , Seizures/metabolism , Zinc Compounds/pharmacology , Animals , Blood Pressure , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Stem/drug effects , Brain Stem/metabolism , Cerebellum/drug effects , Cerebellum/metabolism , Chlorides/administration & dosage , Convulsants/pharmacology , Copper/metabolism , Evans Blue/metabolism , Magnesium/metabolism , Pentylenetetrazole/adverse effects , Permeability , Rats , Rats, Wistar , Seizures/chemically induced , Seizures/drug therapy , Seizures/pathology , Sodium/metabolism , Zinc/metabolism , Zinc Compounds/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...