Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(23)2023 12 04.
Article in English | MEDLINE | ID: mdl-38067194

ABSTRACT

The bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To explore the role of Wnt/ß-catenin for MK and RBC differentiation, we activated ß-catenin signaling in platelet-derived growth factor b (Pdgfb)-expressing cells of the HS using a Cre-lox approach (Ctnnb1BM-GOF). FACS analysis revealed that Pdgfb is mainly expressed by megakaryocytic progenitors (MKPs), MKs and platelets. Recombination resulted in a lethal phenotype in mutants (Ctnnb1BM-GOFwt/fl, Ctnnb1BM-GOFfl/fl) 3 weeks after tamoxifen injection, showing an increase in MKs in the BM and spleen, but no pronounced anemia despite reduced erythrocyte counts. BM transplantation (BMT) of Ctnnb1BM-GOF BM into lethally irradiated wildtype recipients (BMT-Ctnnb1BM-GOF) confirmed the megakaryocytic, but not the lethal phenotype. CFU-MK assays in vitro with BM cells of Ctnnb1BM-GOF mice supported MK skewing at the expense of erythroid colonies. Molecularly, the runt-related transcription factor 1 (RUNX1) mRNA, known to suppress erythropoiesis, was upregulated in Ctnnb1BM-GOF BM cells. In conclusion, ß-catenin activation plays a key role in cell-fate decision favoring MK development at the expense of erythroid production.


Subject(s)
Megakaryocytes , Thrombopoiesis , beta Catenin , Animals , Mice , beta Catenin/metabolism , Megakaryocyte-Erythroid Progenitor Cells , Megakaryocytes/metabolism , Proto-Oncogene Proteins c-sis/metabolism , Thrombopoiesis/physiology
2.
EMBO Mol Med ; 8(1): 39-57, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26666269

ABSTRACT

Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti-angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin-2 (Ang-2) as a potential target in both naive and bevacizumab-treated glioblastoma. Ang-2 expression was absent in normal human brain endothelium, while the highest Ang-2 levels were observed in bevacizumab-treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang-2, whereas the combined inhibition of VEGF and Ang-2 leads to extended survival, decreased vascular permeability, depletion of tumor-associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206(+) (M2-like) macrophages were identified as potential novel targets following anti-angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang-2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang-2 may potentially overcome resistance to bevacizumab therapy.


Subject(s)
Angiopoietin-2/metabolism , Brain Neoplasms/pathology , Glioblastoma/pathology , Angiopoietin-2/antagonists & inhibitors , Angiopoietin-2/blood , Animals , Bevacizumab/therapeutic use , Brain/metabolism , Brain/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Disease Models, Animal , Drug Resistance, Neoplasm , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Glioblastoma/drug therapy , Glioblastoma/mortality , Humans , Lectins, C-Type/metabolism , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Grading , Receptors, Cell Surface/metabolism , Receptors, Vascular Endothelial Growth Factor/pharmacology , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Signal Transduction/drug effects , Up-Regulation/drug effects , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...