Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 531: 672-680, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30075319

ABSTRACT

HYPOTHESIS: An effective way for fixating vesicle structures is the insertion of monomers and cross-linking agents into their bilayer, and their subsequent polymerization can lead to the formation of polymeric nanocapsules. Particularly attractive here are vesicle systems that form spontaneously well-defined small vesicles, as obtaining such small nanocapsules with sizes below 100 nm is still challenging. EXPERIMENTS: A spontaneously forming well-defined vesicle system composed of the surfactants TDMAO (tetradecyldimethylamine oxide), Pluronic L35, and LiPFOS (lithium perfluorooctylsulfonate) mixture was used as template for fixation by polymerization. Therefore, styrene monomer was incorporated into the vesicle bilayer and ultimately these structures were fixated by UV induced radical polymerization. Structural alteration of the vesicles upon loading with monomer and the cross-linker as well as the effect of subsequent polymerization in the membrane were investigated in detail by turbidity measurements, dynamic and static light scattering, (DLS, SLS), and small angle neutron scattering (SANS). FINDINGS: The analysis showed the changes on vesicle structures due to the monomer loading, and that these structures can become permanently fixed by the polymerization process. The potential of this approach to produce well-defined nanocapsules starting from a self-assembled system and following polymerization is critically evaluated.

2.
Langmuir ; 34(31): 9184-9194, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30010346

ABSTRACT

Self-assembled structures in aqueous solutions can be fixed by polymerization after adding hydrophobic monomers and can thereby be used as templates which allow to substantially alter the properties of these systems. In this work, we started from a self-assembled micellar system consisting of the nonionic surfactants tetradecyldimethylamine oxid and Pluronic L35 to which styrene was added as a polymerizable monomer. Interestingly, it was observed that styrene induces a transition from micelles to well-defined vesicles in a similar manner as a typical cosurfactant. The structural transition of the aggregates upon styrene addition as well as the structures formed after initiating a polymerization reaction were investigated by means of turbidity, dynamic and static light scattering, small-angle neutron scattering, and rheology measurements. Especially the scattering results confirmed the interesting effect of styrene on the mesoscopic structure and showed a structural evolution from rod-like micelles for low styrene concentrations to vesicles at intermediate styrene amounts, and then finally the formation of microemulsion droplets for high styrene content. Their polymerization of the vesicles again leads to a shape change to wormlike, polymerized aggregates, whose presence then results in rather viscous systems. In contrast, the microemulsions with higher styrene content then are templated and retain their size after polymerization, thereby leading to nanolattices.

3.
J Agric Food Chem ; 65(13): 2651-2660, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28267924

ABSTRACT

Phytoplasmoses such as apple proliferation (AP) and European stone fruit yellows (ESFY) cause severe economic losses in fruit production. A common symptom of both phytoplasma diseases is early yellowing or leaf chlorosis. Even though chlorosis is a well-studied symptom of biotic and abiotic stresses, its biochemical pathways are hardly known. In particular, in this context, a potential role of the senescence-related pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway is elusive, which degrades chlorophyll (Chl) to phyllobilins (PBs), most notably to colorless nonfluorescent Chl catabolites (NCCs). In this work, we identified the Chl catabolites in extracts of healthy senescent apple and apricot leaves. In extracts of apple tree leaves, a total of 12 Chl catabolites were detected, and in extracts of leaves of the apricot tree 16 Chl catabolites were found. The seven major NCC fractions in the leaves of both fruit tree species were identical and displayed known structures. All of the major Chl catabolites were also found in leaf extracts from AP- or ESFY-infected trees, providing the first evidence that the PaO/PB pathway is relevant also for pathogen-induced chlorosis. This work supports the hypothesis that Chl breakdown in senescence and phytoplasma infection proceeds via a common pathway in some members of the Rosaceae family.


Subject(s)
Chlorophyll/analogs & derivatives , Chlorophyll/metabolism , Malus/microbiology , Oxygenases/metabolism , Phytoplasma/physiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Prunus armeniaca/microbiology , Malus/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Prunus armeniaca/metabolism , Trees/metabolism , Trees/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...