Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Genom Bioinform ; 4(3): lqac049, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35855325

ABSTRACT

Multiple methods have recently been developed to reconstruct full-length B-cell receptors (BCRs) from single-cell RNA sequencing (scRNA-seq) data. This need emerged from the expansion of scRNA-seq techniques, the increasing interest in antibody-based drug development and the importance of BCR repertoire changes in cancer and autoimmune disease progression. However, a comprehensive assessment of performance-influencing factors such as the sequencing depth, read length or number of somatic hypermutations (SHMs) as well as guidance regarding the choice of methodology is still lacking. In this work, we evaluated the ability of six available methods to reconstruct full-length BCRs using one simulated and three experimental SMART-seq datasets. In addition, we validated that the BCRs assembled in silico recognize their intended targets when expressed as monoclonal antibodies. We observed that methods such as BALDR, BASIC and BRACER showed the best overall performance across the tested datasets and conditions, whereas only BASIC demonstrated acceptable results on very short read libraries. Furthermore, the de novo assembly-based methods BRACER and BALDR were the most accurate in reconstructing BCRs harboring different degrees of SHMs in the variable domain, while TRUST4, MiXCR and BASIC were the fastest. Finally, we propose guidelines to select the best method based on the given data characteristics.

2.
PLoS One ; 15(6): e0234780, 2020.
Article in English | MEDLINE | ID: mdl-32579589

ABSTRACT

Obesity epidemic continues to spread and obesity rates are increasing in the world. In addition to public health effort to reduce obesity, there is a need to better understand the underlying biology to enable more effective treatment and the discovery of new pharmacological agents. Abhydrolase domain-containing protein 11 (ABHD11) is a serine hydrolase enzyme, localized in mitochondria, that can synthesize the endocannabinoid 2-arachidonoyl glycerol (2AG) in vitro. In vivo preclinical studies demonstrated that knock-out ABHD11 mice have a similar 2AG level as WT mice and exhibit a lean metabolic phenotype. Such mice resist to weight gain in Diet Induced Obesity studies (DIO) and display normal biochemical plasma parameters. Metabolic and transcriptomic analyses on serum and tissues of ABHD11 KO mice from DIO studies show a modulation in bile salts associated with reduced fat intestinal absorption. These data suggest that modulating ABHD11 signaling pathway could be of therapeutic value for the treatment of metabolic disorders.


Subject(s)
Serine Proteases/metabolism , Weight Gain , Animals , Feces/enzymology , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Knockout Techniques , Humans , MCF-7 Cells , Mice , Mitochondria/metabolism , Serine Proteases/deficiency , Serine Proteases/genetics , Signal Transduction
3.
J Microbiol Biotechnol ; 20(11): 1513-20, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21124055

ABSTRACT

The bacterium capable of producing melanin pigment in the presence of L-tyrosine was isolated from crop field soil sample and identified as Klebsiella sp. GSK based on morphological, biochemical and 16S rDNA sequencing. The polymerization of this pigment occurs outside the cell wall, which has granular structure as melanin ghosts. The chemical characterization of pigment particles showed acid resistant, alkali soluble, insoluble in most of the organic solvents and water. The pigment gets bleached when subjected to the action of oxidants as well as reductants. This pigment was precipitated with FeCl3, ammoniacal silver nitrate and potassium ferricynide. The pigment showed high absorbance in the UV region and decreased absorbance when shifted towards the visible region. The melanin pigment was further charecterized by FT-IR and EPR spectroscopy. A key enzyme 4-hydroxyphenylacetic acid hydroxylase catalyzes the formation of melanin pigment by hydroxylation of L-tyrosine was detected in this bacterium. Inhibition studies with specific inhibitor kojic acid and KCN proved that melanin is synthesized by DOPA-Melanin pathway.


Subject(s)
Klebsiella/metabolism , Melanins/chemistry , Melanins/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/chemistry , Cell Wall/genetics , Cell Wall/metabolism , Hydroxylation , Klebsiella/classification , Klebsiella/genetics , Klebsiella/isolation & purification , Melanins/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Phylogeny , Soil Microbiology , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...