Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 9(19): 14977-14992, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29599919

ABSTRACT

Trib2 pseudokinase has oncogenic and tumour suppressive functions depending on the cellular context. We investigated the ability of Trib2 to transform different haemopoietic stem and progenitor cells (HSPCs). Our study identified the granulocyte-macrophage progenitor (GMP) subpopulation as a potent leukaemia initiating cell of Trib2-driven AML in vivo. Trib2 transformed GMPs generated a fully penetrant and short latency AML. AML cells expressing elevated Trib2 led to a chemoresistant phenotype following chemotherapy treatment. We show that Trib2 overexpression results in an increase in BCL2 expression, and high Trib2 expressing cells are highly sensitive to cell killing by BCL2 inhibition (ABT199). Combined treatment with chemotherapeutic agents and BCL2 inhibition resulted in synergistic killing of Trib2+ AML cells. Trib2 transformed GMP AML cells showed more chemoresistance compared with HSPC derived Trib2 AML cells associated with higher Bcl2 expression. There is significant correlation of high TRIB2 and BCL2 expression in patient derived human AML cells. These data demonstrate that the cell of origin influences the leukaemic profile and chemotherapeutic response of Trib2+ AML. Combined TRIB2 and BCL2 expression in AML cells may have clinical utility relevant for monitoring drug resistance and disease relapse.

2.
Mol Neuropsychiatry ; 2(1): 20-27, 2016 May.
Article in English | MEDLINE | ID: mdl-27525255

ABSTRACT

DISC1 is a multifunctional, intracellular scaffold protein. At the cellular level, DISC1 plays a pivotal role in neural progenitor proliferation, migration, and synaptic maturation. Perturbation of the biological pathways involving DISC1 is known to lead to behavioral changes in rodents, which supports a clinical report of a Scottish pedigree in which the majority of family members with disruption of the DISC1 gene manifest depression, schizophrenia, and related mental conditions. The discrepancy of modest evidence in genetics but strong biological support for the role of DISC1 in mental conditions suggests a working hypothesis that regulation of DISC1 at the protein level, such as posttranslational modification, may play a role in the pathology of mental conditions. In this study, we report the SUMOylation of DISC1. This posttranslational modification occurs on lysine residues where small ubiquitin-related modifier (SUMO) and its homologs are conjugated to a large number of cellular proteins, which in turn regulates their subcellular distribution and protein stability. By using in silico, biochemical, and cell biological approaches, we now demonstrate that human DISC1 is SUMOylated at one specific lysine 643 (K643). We also show that this residue is crucial for proper neural progenitor proliferation in the developing cortex.

3.
Cell Signal ; 26(9): 1958-74, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24815749

ABSTRACT

In Rat-1 cells, the dramatic decrease in the levels of both intracellular cyclic 3'5' adenosine monophosphate (cyclic AMP; cAMP) and in the activity of cAMP-activated protein kinase A (PKA) observed in mitosis was paralleled by a profound increase in cAMP hydrolyzing phosphodiesterase-4 (PDE4) activity. The decrease in PKA activity, which occurs during mitosis, was attributable to PDE4 activation as the PDE4 selective inhibitor, rolipram, but not the phosphodiesterase-3 (PDE3) inhibitor, cilostamide, specifically ablated this cell cycle-dependent effect. PDE4 inhibition caused Rat-1 cells to move from S phase into G2/M more rapidly, to transit through G2/M more quickly and to remain in G1 for a longer period. Inhibition of PDE3 elicited no observable effects on cell cycle dynamics. Selective immunopurification of each of the four PDE4 sub-families identified PDE4D as being selectively activated in mitosis. Subsequent analysis uncovered PDE4D9, an isoform whose expression can be regulated by Disrupted-In-Schizophrenia 1 (DISC1)/activating transcription factor 4 (ATF4) complex, as the sole PDE4 species activated during mitosis in Rat-1 cells. PDE4D9 becomes activated in mitosis through dual phosphorylation at Ser585 and Ser245, involving the combined action of ERK and an unidentified 'switch' kinase that has previously been shown to be activated by H2O2. Additionally, in mitosis, PDE4D9 also becomes phosphorylated at Ser67 and Ser81, through the action of MK2 (MAPKAPK2) and AMP kinase (AMPK), respectively. The multisite phosphorylation of PDE4D9 by all four of these protein kinases leads to decreased mobility (band-shift) of PDE4D9 on SDS-PAGE. PDE4D9 is predominantly concentrated in the perinuclear region of Rat-1 cells but with a fraction distributed asymmetrically at the cell margins. Our investigations demonstrate that the diminished levels of cAMP and PKA activity that characterise mitosis are due to enhanced cAMP degradation by PDE4D9. PDE4D9, was found to locate primarily not only in the perinuclear region of Rat-1 cells but also at the cell margins. We propose that the sequestration of PDE4D9 in a specific complex together with AMPK, ERK, MK2 and the H2O2-activatable 'switch' kinase allows for its selective multi-site phosphorylation, activation and regulation in mitosis.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Mitosis , Nerve Tissue Proteins/metabolism , Activating Transcription Factor 4/metabolism , Amino Acid Sequence , Animals , Cell Line , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Enzyme Activation , Interphase , Intracellular Signaling Peptides and Proteins/metabolism , Molecular Sequence Data , Phosphorylation , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/metabolism , Rats
4.
Biochem Pharmacol ; 85(9): 1297-305, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23473803

ABSTRACT

PDE4 is one of eleven known cyclic nucleotide phosphodiesterase families and plays a pivotal role in mediating hydrolytic degradation of the important cyclic nucleotide second messenger, cyclic 3'5' adenosine monophosphate (cAMP). PDE4 inhibitors are known to have anti-inflammatory properties, but their use in the clinic has been hampered by mechanism-associated side effects that limit maximally tolerated doses. In an attempt to initiate the development of better-tolerated PDE4 inhibitors we have surveyed existing approved drugs for PDE4-inhibitory activity. With this objective, we utilised a high-throughput computational approach that identified moexipril, a well tolerated and safe angiotensin-converting enzyme (ACE) inhibitor, as a PDE4 inhibitor. Experimentally we showed that moexipril and two structurally related analogues acted in the micro molar range to inhibit PDE4 activity. Employing a FRET-based biosensor constructed from the nucleotide binding domain of the type 1 exchange protein activated by cAMP, EPAC1, we demonstrated that moexipril markedly potentiated the ability of forskolin to increase intracellular cAMP levels. Finally, we demonstrated that the PDE4 inhibitory effect of moexipril is functionally able to induce phosphorylation of the small heat shock protein, Hsp20, by cAMP dependent protein kinase A. Our data suggest that moexipril is a bona fide PDE4 inhibitor that may provide the starting point for development of novel PDE4 inhibitors with an improved therapeutic window.


Subject(s)
Computer Simulation , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Molecular Docking Simulation , Phosphodiesterase 4 Inhibitors/chemistry , Tetrahydroisoquinolines/chemistry , Catalytic Domain , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , HEK293 Cells , HSP20 Heat-Shock Proteins/metabolism , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphorylation , Protein Binding , Tetrahydroisoquinolines/pharmacology
5.
Biochem J ; 426(1): 85-90, 2010 Jan 27.
Article in English | MEDLINE | ID: mdl-19925457

ABSTRACT

Insulin stimulates endothelial NO (nitric oxide) synthesis via PKB (protein kinase B)/Akt-mediated phosphorylation and activation of eNOS (endothelial NO synthase) at Ser-1177. In previous studies, we have demonstrated that stimulation of eNOS phosphorylation at Ser-1177 may be required, yet is not sufficient for insulin-stimulated NO synthesis. We therefore investigated the role of phosphorylation of eNOS at alternative sites to Ser-1177 as candidate parallel mechanisms contributing to insulin-stimulated NO synthesis. Stimulation of human aortic endothelial cells with insulin rapidly stimulated phosphorylation of both Ser-615 and Ser-1177 on eNOS, whereas phosphorylation of Ser-114, Thr-495 and Ser-633 was unaffected. Insulin-stimulated Ser-615 phosphorylation was abrogated by incubation with the PI3K (phosphoinositide 3-kinase) inhibitor wortmannin, infection with adenoviruses expressing a dominant-negative mutant PKB/Akt or pre-incubation with TNFalpha (tumour necrosis factor alpha), but was unaffected by high culture glucose concentrations. Mutation of Ser-615 to alanine reduced insulin-stimulated NO synthesis, whereas mutation of Ser-615 to aspartic acid increased NO production by NOS in which Ser-1177 had been mutated to an aspartic acid residue. We propose that the rapid PKB-mediated stimulation of phosphorylation of Ser-615 contributes to insulin-stimulated NO synthesis.


Subject(s)
Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/biosynthesis , Phosphorylation/drug effects , Serine/metabolism , Blotting, Western , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , HeLa Cells , Humans , Mutagenesis, Site-Directed , Nitric Oxide Synthase Type III/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...