Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Pharm Technol Res ; 13(2): 128-132, 2022.
Article in English | MEDLINE | ID: mdl-35464657

ABSTRACT

Furosemide is a diuretic frequently used in the therapeutic management of edema associated with cardiac, renal, and hepatic failure and hypertension. However, there are a very low number of pharmaceutical dosage forms containing furosemide that are suitable for children under 6- years old. Therefore, there is a real need to develop hospital preparations, especially in the hospital. Four oral pediatric solutions of furosemide (2 mg/Ml) were formulated. Two of those solutions did not contain ethanol. For each formulation, 12 batches of 1600.0 Ml were prepared and packaged in 250.0 Ml brown glass bottles with polypropylene screw caps. The physicochemical properties (visual appearance, pH, osmolarity, drug content) and microbiological quality of the finished product were determined on the freshly prepared solutions and after 90 days of storage at 30°C/65% RH. The physicochemical and microbiological characteristics of the freshly prepared solutions were within the prescribed specifications. After 90 days of storage at 30°C/65% RH, the solutions containing sucrose and those without ethanol showed a slight decrease in pH and furosemide content of about 2.5%-4.5% (w/w). Despite this slight decrease, the characteristics remained within the prescribed specifications. Based on the stability profile of the ethanol-free solution containing sorbitol, it could be implemented in hospitals for the care of pediatric patients.

2.
Pharmaceutics ; 12(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575411

ABSTRACT

Ocular inflammation is one of the most common symptom of eye disorders and diseases. The therapeutic management of this inflammation must be rapid and effective in order to avoid deleterious effects for the eye and the vision. Steroidal (SAID) and non-steroidal (NSAID) anti-inflammatory drugs and immunosuppressive agents have been shown to be effective in treating inflammation of the ocular surface of the eye by topical administration. However, it is well established that the anatomical and physiological ocular barriers are limiting factors for drug penetration. In addition, such drugs are generally characterized by a very low aqueous solubility, resulting in low bioavailability as only 1% to 5% of the applied drug permeates the cornea. The present review gives an updated insight on the conventional formulations used in the treatment of ocular inflammation, i.e., ointments, eye drops, solutions, suspensions, gels, and emulsions, based on the commercial products available on the US, European, and French markets. Additionally, sophisticated formulations and innovative ocular drug delivery systems will be discussed. Promising results are presented with micro- and nanoparticulated systems, or combined strategies with polymers and colloidal systems, which offer a synergy in bioavailability and sustained release. Finally, different tools allowing the physical characterization of all these delivery systems, as well as in vitro, ex vivo, and in vivo evaluations, will be considered with regards to the safety, the tolerance, and the efficiency of the drug products.

3.
Mater Sci Eng C Mater Biol Appl ; 106: 110281, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31753335

ABSTRACT

Artemisinin and its derivatives are currently recommended by World Health Organization for the treatment of malaria. Severe malaria requires a parenteral administration of artemisinin-based formulations. However, the effective use of artemisinin is limited by the pharmacokinetic characteristics of the drug (low water solubility, poor bioavailability and short half-life). To overcome some of these drawbacks, artemisinin-loaded surface-decorated nanoparticles were prepared by co-nanoprecipitation of γ-cyclodextrin bioesterified with C10 alkyl chains and polyethylene glycol (PEG) derivatives (polysorbate 80 and DMPE-mPEG2000). Using a single dose (1.5 mg kg-1 or 2 mg kg-1) by intravenous administration, we investigated the in vivo pharmacokinetic properties in healthy rats of two types of artemisinin-loaded nanoparticle formulations, namely, nanosphere and nanoreservoir systems versus an ethanolic-aqueous solution of artemisinin as reference. Significantly enhanced pharmacokinetic parameters were obtained with artemisinin-loaded nanoparticles. In comparison to reference formulation, the geometric mean exposures in plasma (AUC0-t) exhibited 2.35 and 3.26-fold increases when artemisinin was loaded in nanoreservoir and nanosphere systems, respectively. Its plasma half-life increased 4.00 and 6.25-fold and its clearance decreased up to 2.5 and 4.72-fold. Artemisinin was successfully administered intravenously by means of surface-decorated amphiphilic γ-cyclodextrin nanostructures and showed a longer elimination half-life with respect to an artemisinin solution in ethanol. Therefore, these systems are likely to provide significant advantages for the intravenous treatment of severe malaria.


Subject(s)
Antimalarials/pharmacokinetics , Artemisinins/chemistry , Nanoparticles/chemistry , gamma-Cyclodextrins/chemistry , Administration, Intravenous , Animals , Antimalarials/blood , Antimalarials/chemistry , Artemisinins/blood , Artemisinins/pharmacokinetics , Drug Carriers/chemistry , Half-Life , Male , Particle Size , Polyethylene Glycols/chemistry , Rats , Rats, Wistar , Surface Properties
4.
J Adv Pharm Technol Res ; 5(4): 158-63, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25364693

ABSTRACT

This work investigated the possibility of using the biodegradable gentamicin-monoolein-water gels as models, in order to obtain a similar sustained release of ciprofloxacin hydrochloride. Four gels containing antibiotics were prepared and were examined with regard to their physicochemical properties and in vitro drug release characteristics. Ciprofloxacin, unlike gentamicin, which was dissolved in the matrix, was in dispersed form. However, despite its insolubility, microscopic observation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction showed that the developed gel was in the cubic liquid crystalline structure and have maintained their ability to progressively release ciprofloxacin. ciprofloxacin-monoolein-water (5:80:15% w/w), which released in vitro approximately 85% of ciprofloxacin after 16 days could possibly be considered as an alternative to a gentamicin-monoolein-water gel for the treatment of chronic osteomyelitis.

5.
Eur J Pharm Biopharm ; 88(3): 683-94, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25204521

ABSTRACT

In a previous study, we reported on the formulation of Artemisinin-loaded surface-decorated nanoparticles (nanospheres and nanoreservoirs) by co-nanoprecipitation of PEG derivatives (PEG1500 and PEG4000-stearate, polysorbate 80) and biosynthesized γ-CD fatty esters. In the present study, the co-nanoprecipitation was extended to the use of a PEGylated phospholipid, namely DMPE-PEG2000. As our goal was to prepare long-circulating nanocarriers for further systemic delivery of Artemisinin (ART), here, we have investigated, on the one hand, the in vitro behavior of these surface-modified γ-CD-C10 particles toward the immune system (complement activation and macrophage uptake assays) and, on the other hand, their biodistribution features in mice. These experiments showed that the in vitro plasma protein adsorption and phagocytosis by macrophage cells triggered by γ-CD-C10 nanoparticles were significantly reduced when their surface was decorated with amphiphilic PEGylated molecules, in particular PEG1500-stearate, DMPE-mPEG2000 or polysorbate 80. The prolonged blood circulation time assessed by fluorescence imaging was demonstrated for unloaded γ-CD-C10-based nanospheres and nanoreservoir particles containing DMPE-PEG2000 and polysorbate80, respectively. These nanoparticles also proved to be non-hemolytic at the concentration range used in vivo. Within the limits of the conducted experiments, the co-nanoprecipitation technique may be considered as an alternative for surface modification of amphiphilic CD-based drug delivery systems and may be applied to the systemic delivery of ART.


Subject(s)
Anti-Infective Agents/administration & dosage , Artemisinins/administration & dosage , Cyclodextrins/chemistry , Drug Carriers/chemistry , Immune System/drug effects , Nanoparticles/chemistry , Animals , Anti-Infective Agents/blood , Anti-Infective Agents/pharmacokinetics , Artemisinins/blood , Artemisinins/pharmacokinetics , Cell Line , Complement Activation/drug effects , Complement Activation/immunology , Drug Stability , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Macrophages/drug effects , Macrophages/immunology , Mice, Nude , Particle Size , Phagocytosis/drug effects , Phagocytosis/immunology , Sheep , Surface Properties , Tissue Distribution
6.
Curr Top Med Chem ; 14(4): 526-41, 2014.
Article in English | MEDLINE | ID: mdl-24354667

ABSTRACT

Nowadays, colloidal drug carriers represent an alternative to solve drug bioavailabily problems. During the past two decades, colloidal drug carriers have proved to improve the therapeutic index of drugs and thus increase their efficacy and/or reduce their toxicity. However, the major challenge in the development of these drug carriers remains the search for materials able to self-organize into stable nanoscale systems. In particular, amphiphilic α-, ß- and γ-cyclodextrins (CDs), grafted on their secondary or primary side with different aliphatic chains, have been investigated as drug delivery vehicles due to their ability to self-assemble and form various stable colloidal systems such as micellar aggregates, nanoreservoirs or nanoparticles exhibiting a matricial, multilamellar or hexagonal supramolecular organization. These self-assembled CD-based nanodevices show some advantages in terms of stability, good ability to associate lipophilic drugs and good in vivo tolerance. This review focuses on the potential of the structured nanoparticles obtained from nonionic amphiphilic CDs in drug delivery and targeting. We discuss the synthesis and characterization of the building blocks as well as the preparation and characterization of colloidal particles made from these materials. We also considered some pharmaceutical applications and identified opportunities for an optimum use of this CD-based nanotechnology approach in addressing worldwide priority health problems.


Subject(s)
Cyclodextrins/chemical synthesis , Drug Carriers/chemical synthesis , Drug Delivery Systems/methods , Drug Delivery Systems/nursing , Nanoparticles/chemistry , Pharmaceutical Preparations/chemistry , Cyclodextrins/administration & dosage , Cyclodextrins/pharmacology , Drug Carriers/administration & dosage , Drug Carriers/pharmacology , Nanoparticles/ultrastructure , Pharmaceutical Preparations/administration & dosage
7.
Eur J Pharm Biopharm ; 80(3): 508-17, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22226681

ABSTRACT

We recently reported a one-step transesterification of cyclodextrins (CDs) by vinyl-acyl fatty esters catalyzed by thermolysin. By using the solvent displacement method and depending on the experimental conditions, the CD derivatives grafted with decanoic alkyl chains (CD-C(10)) yielded either nanosphere or nanoreservoir-type systems with a size ranging from 70 to 220 nm. Both types of nanostructures were able to associate artemisinin (ART), a well-known antimalarial lipophilic drug. The formulation parameters were optimized to reach stable and high ART dosage corresponding to drug levels of 0.3 and 1.6 mg mL(-1) in the colloidal suspension, for the spherical and reservoir-type nanosystems, respectively. PEG surface-decorated nanoparticles were also prepared by co-nanoprecipitation of PEG fatty acid esters and CD-C(10) molecules. The integration of the PEGylated amphiphiles within the CD-C(10) nanostructures did not influence the ART lyoavailability. Both types of ART-loaded nanosystems showed a sustained in vitro release profile over 96 (nanoreservoirs) and 240 h (nanospheres). Finally, the in vitro antimalarial activity was evaluated using the lactate dehydrogenase assay. ART-containing colloidal suspensions inhibited the growth of cultured Plasmodium falciparum, both multi-resistant K1 and susceptible 3D7 strains with IC(50) values (2.8 and 7.0 ng mL(-1)) close to those of reference ART solution. These colloidal nanosystems based on CD derivatives and containing ART may provide a promising alternative formulation for injectable use of ART.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Artemisinins/chemistry , Artemisinins/pharmacology , Cyclodextrins/chemistry , Nanoparticles/chemistry , Chemistry, Pharmaceutical/methods , Colloids/chemistry , Colloids/pharmacology , Drug Carriers/chemistry , Nanostructures/chemistry , Particle Size , Plasmodium falciparum/drug effects , Polyethylene Glycols/chemistry , Solvents/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Suspensions/chemistry , Suspensions/pharmacology
8.
Biomacromolecules ; 12(8): 3031-8, 2011 Aug 08.
Article in English | MEDLINE | ID: mdl-21710983

ABSTRACT

Nanoparticles of amphiphilic α-, ß-, and γ-cyclodextrins were obtained by formulation of cyclodextrins enzymatically transesterified with vinyl decanoate. The product of this synthesis is a mixture of bioesterified cyclodextrins with various degrees of substitution (DS) presenting for a same DS different regio-isomers. In a first step, the efficiency of a MALDI-TOF procedure to characterize the average molecular weight of the derivative bulk mixture was demonstrated by comparing the results with those obtained from complementary NMR and HPLC techniques. In a second step, the ultrastructure of nanoparticles prepared from three different batches of synthesis was investigated and correlated with the average molecular weight and DS of the parent derivative.


Subject(s)
Colloids , Cyclodextrins/chemistry , Decanoic Acids/chemistry , Nanoparticles , Chromatography, High Pressure Liquid , Esterification , Limit of Detection , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...