ABSTRACT
BACKGROUND: Glioblastoma (GBM) is the most frequent primary malignant CNS tumor. Deficient mismatch repair (dMMR) is associated with better prognosis and is a biomarker for immunotherapy. Evaluation of MMR by immunohistochemistry (IHC) is accessible, cost effective, sensitive, and specific. AIM: Our objective was to investigate MMR proteins in adult GBM patients. MATERIALS AND METHODS: We retrospectively analyzed 68 GBM samples to evaluate the proficiency of MMR genes expression assessed by IHC. Clinicopathologic and molecular features were compared in proficient (pMMR) or dMMR. RESULTS: 10 (14.7%) samples showed dMMR, and the most frequent was MSH6 (100%) followed by MSH2, PMS2, and MLH1. We observed heterogeneous expression of dMMR in 5 GBMs. The median overall survival did not differ between pMMR (19.8 months; 0.2-30) and dMMR (16.9 months; 6.4-27.5) (p = 0.31). We observed a significantly higher overall survival associated with gross total resection compared to subtotal resection or biopsy (30.7 vs. 13.6 months, p = 0.02) and MGMT methylated status (29.6 vs. 19.8 months, p = 0.049). At the analysis time, 10 patients were still alive, all in the pMMR group. CONCLUSIONS: Our data demonstrated dMMR phenotype assessed by IHC in an expressive portion of GBM patients, however without significant impact on overall survival.
Subject(s)
Glioblastoma , Adult , Humans , Glioblastoma/genetics , Immunohistochemistry , Brazil , DNA Mismatch Repair/genetics , Retrospective StudiesABSTRACT
AIMS: Obtain varieties of Gluconacetobacter hansenii from original strain ATCC 23729 with greater efficiency to produce bacterial cellulose (BC) membrane with better dry mass yield for application as support of sustained antimicrobials' drug release. METHODS AND RESULTS: Application of different chemical and physical conditions (pH, temperature and UV light exposure) to obtain different G. hansenii varieties with high capacity to produce BC membranes. Characterization of the G. hansenii variants was performed by scanning electron microscopy (SEM) and optical microscopy of the colony-forming units. BC membrane produced was characterized by SEM, infrared spectroscopy and X-ray diffraction. The BC produced by variants isolated after incubation at 35°C showed elevated dry mass yield and high capacity of retention and sustained release of ceftriaxone antibiotic with the produced BC by original G. hansenii ATCC 23769 strain subjected to incubation at 28°C and with commercial BC. CONCLUSION: The application of different chemical and physical conditions constitutes an important method to obtain varieties of micro-organisms with dissimilar metabolism advantageous in relation to the original strain in the BC production. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate the importance of in vivo studies for the application, in medicine, of BC membranes as support for antimicrobial-sustained release for the skin wound treatment.
Subject(s)
Anti-Infective Agents/pharmacokinetics , Cellulose , Delayed-Action Preparations/chemistry , Gluconacetobacter , Ceftriaxone/pharmacokinetics , Cellulose/chemistry , Cellulose/metabolism , Cellulose/ultrastructure , Gluconacetobacter/chemistry , Gluconacetobacter/metabolism , Microscopy, Electron, Scanning , X-Ray DiffractionABSTRACT
The current study examined the protective effects of l-glutamine and cytochalasin B during vitrification of immature bovine oocytes. Oocyte vitrification solution (PBS supplemented with 10% FCS, 25% EG, 25% DMSO and 0.5 m trehalose) was the vitrification control. Treatments were the addition of 7 µg/ml cytochalasin B, 80 mm glutamine or both cytochalasin and glutaminine for 30 s. After warming, oocytes were matured in vitro for 24 h, fixed and stained with Hoechst (33342) for nuclear maturation evaluation. L-glutamine improved the vitrified/warmed immature bovine oocytes viability (32.8%), increasing the nuclear maturation rates compared to other treatments and the no treatment vitrified control (17.4%). There was, however, no effect of cytochalasin B on in vitro maturation (14.4%).