Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Nat Commun ; 14(1): 7148, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932304

ABSTRACT

Cyclic electron transfer (CET) predominates when NADP+ is at basal levels, early in photosynthetic induction; however, the mechanism underlying the subsequent supply of NADP+ to fully drive steady-state linear electron transfer remains unclear. Here, we investigated whether CET is involved in de novo NADP+ supply in Arabidopsis thaliana and measured chloroplastic NADP dynamics to evaluate responsiveness to variable light, photochemical inhibitors, darkness, and CET activity. The sum of oxidized and reduced forms shows that levels of NADP and NAD increase and decrease, respectively, in response to light; levels of NADP and NAD decrease and increase in the dark, respectively. Moreover, consistent with the pH change in the stroma, the pH preference of chloroplast NAD+ phosphorylation and NADP+ dephosphorylation is alkaline and weakly acidic, respectively. Furthermore, CET is correlated with upregulation of light-responsive NADP level increases and downregulation of dark-responsive NADP level reductions. These findings are consistent with CET helping to regulate NADP pool size via stromal pH regulation under fluctuating light conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , NADP/metabolism , NAD/metabolism , Chloroplasts/metabolism , Electron Transport , Photosynthesis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Hydrogen-Ion Concentration , Oxidation-Reduction
2.
Microbiol Spectr ; : e0256123, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732762

ABSTRACT

Microbial volatile metabolite 2-methylisoborneol (2-MIB) causes odor and taste issues in drinking water, making it unappealing for human consumption. It has been suggested that 2-MIB biosynthesis consists of two main steps, namely, methylation of geranyl diphosphate into 2-methyl geranyl diphosphate by geranyl diphosphate methyl transferase (GPPMT) and subsequent cyclization into 2-MIB by 2-MIB synthase (MIBS). Pseudanabaena foetida var. intermedia is a 2-MIB-producing cyanobacterium whose GPPMT and MIBS enzymes are encoded by adjacent mtf and mtc genes. The present study identified a 2-MIB-related gene cluster composed of cnbA, mtf, mtc, and cnbB genes in P. foetida var. intermedia. The two homologous cyclic nucleotide-binding protein genes, cnbA and cnbB, were detected adjacent to the mtf and mtc genes, respectively. The nucleotide sequence of the cnbA-mtf-mtc-cnbB gene cluster showed 99.55% identity with 2-MIB synthesis-associated gene cluster of Pseudanabaena sp. dqh15. RT-PCR results revealed that mtf and mtc genes are co-expressed, while cnbA and cnbB genes are expressed independently in P. foetida var. intermedia. To investigate whether only mtf and mtc genes are sufficient for 2-MIB synthesis, the two-gene unit (mtf-mtc) was introduced into Escherichia coli strain JM109 via overexpression vector pYS1C. Gas chromatograph-mass spectrometry results showed that the E. coli strain transformed with mtf-mtc was able to produce 2-MIB. The intracellular 2-MIB level in P. foetida var. intermedia was higher than the extracellular 2-MIB level, while the transformed E. coli strain showed an opposite trend. Growth inhibition was observed in the 2-MIB-producing transformed E. coli strain. IMPORTANCE Contamination of drinking water with odiferous microbial metabolite 2-MIB is a worldwide concern. Removal of 2-MIB from drinking water burdens the water purification process. Therefore, it is important to search for alternative methods, such as suppressing the production of 2-MIB by aquatic microorganisms. For that, it is necessary to expand the current knowledge about the mechanism of 2-MIB synthesis at the genetic level. This study revealed that mtf and mtc genes of the 2-MIB-related gene cluster are transcribed as a single unit in P. foetida var. intermedia, and the expression of both mtf and mtc genes is essential and sufficient for 2-MIB synthesis in E. coli heterologous gene expression system.

3.
Plant Direct ; 7(9): e529, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37731912

ABSTRACT

The NAM, ATAF1/2, and CUC2 (NAC) domain transcription factor VND-INTERACTING2 (VNI2) negatively regulates xylem vessel formation by interacting with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel formation. Here, we screened interacting proteins with VNI2 using yeast two-hybrid assay and isolated two NAC domain transcription factors, Arabidopsis thaliana ACTIVATION FACTOR 2 (ATAF2) and NAC DOMAIN CONTAINING PROTEIN 102 (ANAC102). A transient gene expression assay showed that ATAF2 upregulates the expression of genes involved in leaf senescence, and VNI2 effectively inhibits the transcriptional activation activity of ATAF2. vni2 mutants accelerate leaf senescence, whereas ataf2 mutants delay leaf senescence. In addition, the accelerated leaf senescence phenotype of the vni2 mutant is recovered by simultaneous mutation of ATAF2. Our findings strongly suggest that VNI2 interacts with and inhibits ATAF2, resulting in negatively regulating leaf senescence.

4.
Plant Sci ; 336: 111840, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619867

ABSTRACT

In plants, the 2-hydroxy fatty acids (HFAs) of sphingolipids are important for plant growth and stress responses. Although the synthetic pathway of HFAs is well understood, their degradation has not yet been elucidated. In Saccharomyces cerevisiae, Mpo1 has been identified as a dioxygenase that degrades HFAs. This study examined the functions of two homologs of yeast Mpo1, MHP1 and MHL, in Arabidopsis thaliana. The mhp1 and mhp1mhl mutants showed a dwarf phenotype compared to that of the wild type. Lipid analysis of the mutants revealed the involvement of MHP1 and MHL in synthesizing odd-chain fatty acids (OCFAs), possibly by the degradation of HFAs. OCFAs are present in trace amounts in plants; however, their physiological significance is largely unknown. RNA sequence analysis of the mhp1mhl mutant revealed that growth-related genes decreased, whereas genes involved in stress response increased. Additionally, the mhp1mhl mutant had increased expression of defense-related genes and increased resistance to infection by Pseudomonas syringae pv. tomato DC3000 (Pto), and Pto carrying the effector AvrRpt2. Phytohormone analysis demonstrated that jasmonic acid in mhp1mhl was higher than that in the wild type. These results indicate that MHP1 and MHL are involved in synthesizing OCFAs and immunity in Arabidopsis.

5.
Plant Signal Behav ; 18(1): 2215618, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37272565

ABSTRACT

Arabidopsis NADK2 (NAD kinase 2) is a chloroplast-localized enzyme involved in NADP+ synthesis, which acts as the final electron acceptor in the photosynthetic electron transfer chain. The NADK2-deficient mutant (nadk2) was used to analyze the effect of NAD(P)(H) unbalance in the dark-induced leaf senescence. During senescence, WT plants and nadk2 mutants showed a similar reduction in chlorophyll content. NAD(P)(H) quantification showed that the amount of total NAD(P)(H) decreased on the day 7 in WT but on the day 3 in nadk2. The phosphorylation ratio (i.e. NADP(H)/NAD(H)) decreased on day 1 in WT. In contrast, the nadk2 showed lower phosphorylation ratio at 0 day and no change throughout the aging process. Metabolome analysis showed that the metabolic profiles of both WT plants and nadk2 mutants subjected to dark-induced senescence adopted similar patterns as the senescence progressed. However, the changes in individual metabolites in the nadk2 mutants were different from those of the WT during dark-induced senescence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , NAD/metabolism , NADP/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Senescence
6.
Plant Physiol ; 192(4): 3030-3048, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37021761

ABSTRACT

Phosphorus is an essential nutrient acquired from soil as phosphate (Pi), and its deficiency severely reduces plant growth and crop yield. Here, we show that single nucleotide polymorphisms (SNPs) at the PHOSPHATIDYLINOSITOL TRANSFER PROTEIN7 (AtPITP7) locus, which encodes a chloroplastic Sec14-like protein, are associated with genetic diversity regarding Pi uptake activity in Arabidopsis (Arabidopsis thaliana). Inactivation of AtPITP7 and its rice (Oryza sativa) homolog (OsPITP6) through T-DNA insertion and CRISPR/Cas9-mediated gene editing, respectively, decreased Pi uptake and plant growth, regardless of Pi availability. By contrast, overexpression of AtPITP7 and OsPITP6 enhanced Pi uptake and plant growth, especially under limited Pi supply. Importantly, overexpression of OsPITP6 increased the tiller number and grain yield in rice. Targeted metabolome analysis of glycerolipids in leaves and chloroplasts revealed that inactivation of OsPITP6 alters phospholipid contents, independent of Pi availability, diminishing the reduction in phospholipid content and increase in glycolipid content induced by Pi deficiency; meanwhile, overexpression of OsPITP6 enhanced Pi deficiency-induced metabolic alterations. Together with transcriptome analysis of ospitp6 rice plants and phenotypic analysis of grafted Arabidopsis chimeras, these results suggest that chloroplastic Sec14-like proteins play an essential role in growth modulations in response to changes in Pi availability, although their function is critical for plant growth under any Pi condition. The superior traits of OsPITP6-overexpressing rice plants also highlight the potential of OsPITP6 and its homologs in other crops as additional tools for improving Pi uptake and plant growth in low Pi environments.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Phosphates/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
7.
J Plant Physiol ; 283: 153950, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36889102

ABSTRACT

Nicotinamide adenine dinucleotides (NAD+ and NADP+) are electron mediators involved in various metabolic pathways. NADP(H) are produced by NAD kinase (NADK) through the phosphorylation of NAD(H). The Arabidopsis NADK3 (AtNADK3) is reported to preferentially phosphorylate NADH to NADPH and is localized in the peroxisome. To elucidate the biological function of AtNADK3 in Arabidopsis, we compared metabolites of nadk1, nadk2 and nadk3 Arabidopsis T-DNA inserted mutants. Metabolome analysis revealed that glycine and serine, which are intermediate metabolites of photorespiration, both increased in the nadk3 mutants. Plants grown for 6 weeks under short-day conditions showed increased NAD(H), indicating a decrease in the phosphorylation ratio in the NAD(P)(H) equilibrium. Furthermore, high CO2 (0.15%) treatment induced a decrease in glycine and serine in nadk3 mutants. The nadk3 showed a significant decrease in post-illumination CO2 burst, suggesting that the photorespiratory flux was disrupted in the nadk3 mutant. In addition, an increase in CO2 compensation points and a decrease in CO2 assimilation rate were observed in the nadk3 mutants. These results indicate that the lack of AtNADK3 causes a disruption in the intracellular metabolism, such as in amino acid synthesis and photorespiration.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Carbon Dioxide/metabolism , Glycine/metabolism , NAD/metabolism , NADP/metabolism , Serine/metabolism
8.
Ann Bot ; 131(3): 423-436, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36579472

ABSTRACT

BACKGROUND AND AIMS: Evergreen herbaceous species in the deciduous forest understorey maintain their photosystems in long-lived leaves under dynamic seasonal changes in light and temperature. However, in evergreen understorey herbs, it is unknown how photosynthetic electron transport acclimates to seasonal changes in forest understorey environments, and what photoprotection systems function in excess energy dissipation under high-light and low-temperature environments in winter. METHODS: Here, we used Asarum tamaense, an evergreen herbaceous species in the deciduous forest understorey with a single-flush and long-lived leaves, and measured photosynthetic CO2 assimilation and electron transport in leaves throughout the year. The contents of photosynthetic proteins, pigments and primary metabolites were determined from regularly collected leaves. KEY RESULTS: Both the rates of CO2 assimilation and electron transport under saturated light were kept low in summer, but increased in autumn and winter in A. tamaense leaves. Although the contents of photosynthetic proteins including Rubisco did not increase in autumn and winter, the proton motive force and ΔpH across the thylakoid membrane were high in summer and decreased from summer to winter to a great extent. These decreases alleviated the suppression by lumen acidification and increased the electron transport rate in winter. The content and composition of carotenoids changed seasonally, which may affect changes in non-photochemical quenching from summer to winter. Winter leaves accumulated proline and malate, which may support cold acclimation. CONCLUSIONS: In A. tamaense leaves, the increase in photosynthetic electron transport rates in winter was not due to an increase in photosynthetic enzyme contents, but due to the activation of photosynthetic enzymes and/or release of limitation of photosynthetic electron flow. These seasonal changes in the regulation of electron transport and also the changes in several photoprotection systems should support the acclimation of photosynthetic C gain under dynamic environmental changes throughout the year.


Subject(s)
Asarum , Asarum/metabolism , Seasons , Carbon Dioxide/metabolism , Photosynthesis/physiology , Plants/metabolism
10.
J Plant Res ; 136(1): 97-106, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36367584

ABSTRACT

Chloroplast-localized NAD kinase (NADK2) is responsible for the production of NADP+, which is an electron acceptor in the linear electron flow of photosynthesis. The Arabidopsis T-DNA-inserted mutant of NADK2 (nadk2) showed delayed growth and pale-green leaves under continuous light conditions. Under short-day conditions (8 h light / 16 h dark), the nadk2 mutant showed more severe growth inhibition.The genomic fragment containing the promoter and coding region of NADK2 complemented the phenotypes of nadk2 obtained under continuous light and short-day conditions. The nadk2 mutant produced higher amounts of H2O2 and O2-, which were reduced in the complementary line. Under short-day conditions, the nadk2 mutant accumulated more H2O2 than under continuous light conditions. The accumulation of ascorbate and up-regulation of the PDF1.2 and PR1 genes indicated that the nadk2 mutant is under ROS stress and responding to keep its living activities.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Reactive Oxygen Species , Hydrogen Peroxide , Chloroplasts/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Photosynthesis/physiology
11.
Metabolomics ; 18(12): 95, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36409428

ABSTRACT

INTRODUCTION: Plant cell walls play an important role in providing physical strength and defence against abiotic stress. Rice brittle culm (bc) mutants are a strength-decreased mutant because of abnormal cell walls, and it has been reported that the causative genes of bc mutants affect cell wall composition. However, the metabolic alterations in each organ of bc mutants have remained unknown. OBJECTIVES: To evaluate the metabolic changes in rice bc mutants, comparative analysis of the primary metabolites was conducted. METHODS: The primary metabolites in leaves, internodes, and nodes of rice bc mutants and wild-type control were measured using CE- and LC-MS/MS. Multivariate analyses using metabolomic data was performed. RESULTS: We found that mutations in each bc mutant had different effects on metabolism. For example, higher oxalate content was observed in bc3 and bc1 bc3 mutants, suggesting that surplus carbon that was not used for cell wall components might be used for oxalate synthesis. In addition, common metabolic alterations such as a decrease of sugar nucleotides in nodes were found in bc1 and Bc6, in which the causative genes are involved in cellulose accumulation. CONCLUSION: These results suggest that metabolic analysis of the bc mutants could elucidate the functions of causative gene and improve the cell wall components for livestock feed or bioethanol production.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Chromatography, Liquid , Metabolomics , Tandem Mass Spectrometry , Oxalates/metabolism
12.
Plant Biotechnol (Tokyo) ; 39(2): 147-153, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35937523

ABSTRACT

An Arabidopsis NAC domain transcription factor VND-INTERACTING2 (VNI2) was originally isolated as an interacting protein with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel element differentiation. VNI2 inhibits transcriptional activation activity of VND7 by forming a protein complex. Here, to obtain insights into how VNI2 regulates VND7, we tried to identify the amino acid region of VNI2 required for inhibition of VND7. VNI2 has an amino acid sequence similar to the ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR (ERF)-associated amphiphilic repression (EAR) motif, conserved in transcriptional repressors, at the C-terminus. A transient expression assay showed that the EAR-like motif of VNI2 was not required for inhibition of VND7. The C-terminal deletion series of VNI2 revealed that 10 amino acid residues, highly conserved in the VNI2 orthologs contributed to effective repression of the transcriptional activation activity of VND7. Observation of transgenic plants ectopically expressing VNI2 showed that the identified 10 amino acid sequence strongly affected xylem vessel formation and plant growth. These data indicated that the 10 amino acid sequence of VNI2 has an important role in its transcriptional repression activity and negative regulation of xylem vessel formation.

13.
Commun Biol ; 5(1): 432, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534536

ABSTRACT

Nitrate is a nutrient signal that regulates growth and development through NLP transcription factors in plants. Here we identify the L-aspartate oxidase gene (AO) necessary for de novo NAD+ biosynthesis as an NLP target in Arabidopsis. We investigated the physiological significance of nitrate-induced AO expression by expressing AO under the control of the mutant AO promoter lacking the NLP-binding site in the ao mutant. Despite morphological changes and severe reductions in fresh weight, the loss of nitrate-induced AO expression resulted in minimum effects on NAD(H) and NADP(H) contents, suggesting compensation of decreased de novo NAD+ biosynthesis by reducing the growth rate. Furthermore, metabolite profiling and transcriptome analysis revealed that the loss of nitrate-induced AO expression causes pronounced impacts on contents of TCA cycle- and urea cycle-related metabolites, gene expression profile, and their modifications in response to changes in the nitrogen nutrient condition. These results suggest that proper maintenance of metabolic balance requires the coordinated regulation of multiple metabolic pathways by NLP-mediated nitrate signaling in plants.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Aspartic Acid/metabolism , Gene Expression , Gene Expression Regulation, Plant , NAD/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Nutrients
14.
Plant Physiol ; 189(2): 839-857, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35312013

ABSTRACT

Plant sphingolipids mostly possess 2-hydroxy fatty acids (HFA), the synthesis of which is catalyzed by FA 2-hydroxylases (FAHs). In Arabidopsis (Arabidopsis thaliana), two FAHs (FAH1 and FAH2) have been identified. However, the functions of FAHs and sphingolipids with HFAs (2-hydroxy sphingolipids) are still unknown because of the lack of Arabidopsis lines with the complete deletion of FAH1. In this study, we generated a FAH1 mutant (fah1c) using CRISPR/Cas9-based genome editing. Sphingolipid analysis of fah1c, fah2, and fah1cfah2 mutants revealed that FAH1 hydroxylates very long-chain FAs (VLCFAs), whereas the substrates of FAH2 are VLCFAs and palmitic acid. However, 2-hydroxy sphingolipids are not completely lost in the fah1cfah2 double mutant, suggesting the existence of other enzymes catalyzing the hydroxylation of sphingolipid FAs. Plasma membrane (PM) analysis and molecular dynamics simulations revealed that hydroxyl groups of sphingolipid acyl chains play a crucial role in the organization of nanodomains, which are nanoscale liquid-ordered domains mainly formed by sphingolipids and sterols in the PM, through hydrogen bonds. In the PM of the fah1cfah2 mutant, the expression levels of 26.7% of the proteins, including defense-related proteins such as the pattern recognition receptors (PRRs) brassinosteroid insensitive 1-associated receptor kinase 1 and chitin elicitor receptor kinase 1, NADPH oxidase respiratory burst oxidase homolog D (RBOHD), and heterotrimeric G proteins, were lower than that in the wild-type. In addition, reactive oxygen species (ROS) burst was suppressed in the fah1cfah2 mutant after treatment with the pathogen-associated molecular patterns flg22 and chitin. These results indicated that 2-hydroxy sphingolipids are necessary for the organization of PM nanodomains and ROS burst through RBOHD and PRRs during pattern-triggered immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Chitin/metabolism , Fatty Acids/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Reactive Oxygen Species/metabolism , Respiratory Burst , Sphingolipids/metabolism
15.
J Exp Med ; 219(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35297954

ABSTRACT

New neurons, continuously added in the adult olfactory bulb (OB) and hippocampus, are involved in information processing in neural circuits. Here, we show that synaptic pruning of adult-born neurons by microglia depends on phosphatidylserine (PS), whose exposure on dendritic spines is inversely correlated with their input activity. To study the role of PS in spine pruning by microglia in vivo, we developed an inducible transgenic mouse line, in which the exposed PS is masked by a dominant-negative form of milk fat globule-EGF-factor 8 (MFG-E8), MFG-E8D89E. In this transgenic mouse, the spine pruning of adult-born neurons by microglia is impaired in the OB and hippocampus. Furthermore, the electrophysiological properties of these adult-born neurons are altered in MFG-E8D89E mice. These data suggest that PS is involved in the microglial spine pruning and the functional maturation of adult-born neurons. The MFG-E8D89E-based genetic approach shown in this study has broad applications for understanding the biology of PS-mediated phagocytosis in vivo.


Subject(s)
Microglia , Phosphatidylserines , Animals , Antigens, Surface/genetics , Mice , Mice, Transgenic , Neuronal Plasticity , Neurons
16.
Plant Mol Biol ; 107(1-2): 63-84, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34460049

ABSTRACT

KEY MESSAGE: Overexpressing Nicotinamidase 3 gene, and the exogenous application of its metabolite nicotinic acid (NA), enhance drought stress tolerance and increase biomass in Arabidopsis thaliana. With progressive global climatic changes, plant productivity is threatened severely by drought stress. Deciphering the molecular mechanisms regarding genes responsible for balancing plant growth and stress amelioration could imply multiple possibilities for future sustainable goals. Nicotinamide adenine dinucleotide (NAD) biosynthesis and recycling/ distribution is a crucial feature for plant growth. The current study focuses on the functional characterization of nicotinamidase 3 (NIC3) gene, which is involved in the biochemical conversion of nicotinamide (NAM) to nicotinic acid (NA) in the salvage pathway of NAD biosynthesis. Our data show that overexpression of NIC3 gene enhances drought stress tolerance and increases plant growth. NIC3-OX plants accumulated more NA as compared to WT plants. Moreover, the upregulation of several genes related to plant growth/stress tolerance indicates that regulating the NAD salvage pathway could significantly enhance plant growth and drought stress tolerance. The exogenous application of nicotinic acid (NA) showed a similar phenotype as the effect of overexpressing NIC3 gene. In short, we contemplated the role of NIC3 gene and NA application in drought stress tolerance and plant growth. Our results would be helpful in engineering plants with enhanced drought stress tolerance and increased growth potential.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Droughts , Gene Expression Regulation, Plant , Niacin/physiology , Nicotinamidase/genetics , Adaptation, Physiological/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Models, Biological , NAD/metabolism , NADP/metabolism , Niacin/pharmacology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/physiology , Plants, Genetically Modified , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcriptome/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
17.
J Plant Physiol ; 265: 153495, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411985

ABSTRACT

Nicotinamide adenine dinucleotides (NAD(H)) and NAD phosphates (NADP(H)) are electron carriers involved in redox reactions and metabolic processes in all organisms. NAD kinase (NADK) is the only enzyme that phosphorylates NAD+ into NADP+, using ATP as a phosphate donor. In NADP-dependent malic enzyme (NADP-ME)-type C4 photosynthesis, NADP(H) are required for dehydrogenation by NADP-dependent malate dehydrogenase (NADP-MDH) in mesophyll cells, and decarboxylation by NADP-ME in bundle sheath cells. In this study, we identified five NADK genes (FbNADK1a, 1b, 2a, 2b, and 3) from the C4 model species Flaveria bidentis. RNA-Seq database analysis revealed higher transcript abundance in one of the chloroplast-type NADK2 genes of C4F. bidentis (FbNADK2a). Comparative analysis of NADK activity in leaves of C3, C3-C4, and C4Flaveria showed that C4Flaveria (F. bidentis and F. trinervia) had higher NADK activity than the other photosynthetic-types of Flaveria. Taken together, our results suggest that chloroplastic NAD kinase appeared to increase in importance as C3 plants evolved into C4 plants in the genus Flaveria.


Subject(s)
Chloroplasts/enzymology , Chloroplasts/genetics , Flaveria/enzymology , Flaveria/genetics , NADP/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , NADP/genetics
18.
Nat Commun ; 12(1): 4944, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400629

ABSTRACT

Plants use nitrate, ammonium, and organic nitrogen in the soil as nitrogen sources. Since the elevated CO2 environment predicted for the near future will reduce nitrate utilization by C3 species, ammonium is attracting great interest. However, abundant ammonium nutrition impairs growth, i.e., ammonium toxicity, the primary cause of which remains to be determined. Here, we show that ammonium assimilation by GLUTAMINE SYNTHETASE 2 (GLN2) localized in the plastid rather than ammonium accumulation is a primary cause for toxicity, which challenges the textbook knowledge. With exposure to toxic levels of ammonium, the shoot GLN2 reaction produced an abundance of protons within cells, thereby elevating shoot acidity and stimulating expression of acidic stress-responsive genes. Application of an alkaline ammonia solution to the ammonium medium efficiently alleviated the ammonium toxicity with a concomitant reduction in shoot acidity. Consequently, we conclude that a primary cause of ammonium toxicity is acidic stress.


Subject(s)
Ammonium Compounds/metabolism , Ammonium Compounds/toxicity , Arabidopsis/drug effects , Arabidopsis/metabolism , Glutamate-Ammonia Ligase/metabolism , Plastids/metabolism , Amino Acids , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Glutamate-Ammonia Ligase/drug effects , Glutamate-Ammonia Ligase/genetics , Nitrates/metabolism , Nitrogen/metabolism , Plant Shoots/metabolism
19.
Curr Biol ; 31(11): 2374-2385.e4, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33857428

ABSTRACT

Plant endosymbiosis relies on the development of specialized membranes that encapsulate the endosymbiont and facilitate nutrient exchange. However, the identity and function of lipids within these membrane interfaces is largely unknown. Here, we identify GLUCOSAMINE INOSITOL PHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) as a sphingolipid glycosyltransferase highly expressed in Medicago truncatula root nodules and roots colonized by arbuscular mycorrhizal (AM) fungi and further demonstrate that this enzyme functions in the synthesis of N-acetyl-glucosamine-decorated glycosyl inositol phosphoryl ceramides (GIPCs) in planta. MtGINT1 expression was developmentally regulated in symbiotic tissues associated with the development of symbiosome and periarbuscular membranes. RNAi silencing of MtGINT1 did not affect overall root growth but strongly impaired nodulation and AM symbiosis, resulting in the senescence of symbiosomes and arbuscules. Our results indicate that, although M. truncatula root sphingolipidome predominantly consists of hexose-decorated GIPCs, local reprogramming of GIPC glycosylation by MtGINT1 is required for the persistence of endosymbionts within the plant cell.


Subject(s)
Medicago truncatula , Mycorrhizae , Gene Expression Regulation, Plant , Glucosamine , Glycosylation , Inositol , Medicago truncatula/genetics , Medicago truncatula/metabolism , Mycorrhizae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Sphingolipids , Symbiosis
20.
Plant Direct ; 5(3): e00309, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33763627

ABSTRACT

Glycosylinositolphosphorylceramides (GIPCs) are the predominant lipid in the outer leaflet of the plasma membrane. Characterized GIPC glycosylation mutants have severe or lethal plant phenotypes. However, the function of the glycosylation is unclear. Previously, we characterized Arabidopsis thaliana GONST1 and showed that it was a nucleotide sugar transporter which provides GDP-mannose for GIPC glycosylation. gonst1 has a severe growth phenotype, as well as a constitutive defense response. Here, we characterize a mutant in GONST1's closest homolog, GONST2. The gonst2-1 allele has a minor change to GIPC headgroup glycosylation. Like other reported GIPC glycosylation mutants, gonst1-1gonst2-1 has reduced cellulose, a cell wall polymer that is synthesized at the plasma membrane. The gonst2-1 allele has increased resistance to a biotrophic pathogen Golovinomyces orontii but not the necrotrophic pathogen Botrytis cinerea. Expression of GONST2 under the GONST1 promoter can rescue the gonst1 phenotype, indicating that GONST2 has a similar function to GONST1 in providing GDP-D-Man for GIPC mannosylation.

SELECTION OF CITATIONS
SEARCH DETAIL
...