Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535677

ABSTRACT

Achieving the thermal conductivity required for efficient heat management in semiconductors and other devices requires the integration of thermally conductive ceramic fillers at concentrations of 60 vol% or higher. However, an increased filler content often negatively affects the mechanical properties of the composite matrix, limiting its practical applicability. To address this issue, in this paper, we present a new strategy to reduce the required ceramic filler content: the use of a thermally conductive ceramic composite filler with carbon nanotubes (CNTs) grown on aluminum nitride (AlN). We combined catalyst coating technology with vacuum filtration to ensure that the catalyst was uniformly applied to micrometer-sized AlN particles, followed by the efficient and uniform synthesis of CNTs using a water-assisted process in a vertical furnace. By carefully controlling the number of vacuum filtration cycles and the growth time of the CNTs, we achieved precise control over the number and length of the CNT layers, thereby adjusting the properties of the composite to the intended specifications. When AlN/CNT hybrid fillers are incorporated into silicone rubber, while maintaining the mechanical properties of rubber, the thermal diffusivity achieved at reduced filler levels exceeds that of composites using AlN-only or simultaneous AlN and CNTs formulations. This demonstrates the critical influence of CNTs on AlN surfaces. Our study represents a significant advancement in the design of thermally conductive materials, with potential implications for a wide range of applications.

2.
ACS Appl Mater Interfaces ; 16(3): 4199-4211, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38113170

ABSTRACT

Carbon nanotubes (CNTs) stand out for their exceptional electrical, thermal, and mechanical attributes, making them highly promising materials for cutting-edge, lightweight, and flexible thermoelectric applications. However, realizing the full potential of advanced thermoelectric CNTs requires precise management of their electrical and thermal characteristics. This study, through interface optimization, demonstrates the feasibility of reducing the thermal conductivity while preserving robust electrical conductivity in single-walled CNT films. Our findings reveal that blending two functionalized CNTs offers a versatile method of tailoring the structural and electronic properties of CNT films. Moreover, the modified interface exerts a substantial influence over thermal and electrical transfer, effectively suppressing heat dissipation and facilitating thermoelectric power generation within CNT films. As a result, we have successfully produced both p- and n-type thermoelectric CNTs, attaining impressive power factors of 507 and 171 µW/mK2 at room temperature, respectively. These results provide valuable insights into the fabrication of high-performance thermoelectric CNT films.

3.
RSC Adv ; 13(18): 11884-11888, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37077260

ABSTRACT

In this study, we used the lock-in thermography technique (LIT) to successfully visualize the single-walled carbon nanotube (CNT) networks during the tensile deformation of CNT/fluoro-rubber (FKM) composites. The LIT images revealed that the CNT network modes in CNT/FKM during strain-loading and unloading can be classified into four sites: (i) disconnection, (ii) recovery after disconnection, (iii) undestroyable, and (iv) no network. Quantitative analysis of the heat intensity of the LIT also indicated that the change in resistance during strain-loading and unloading plays a role in the balance of disconnection and reconstruction of the conductive network. We demonstrated the ability of LIT to effectively visualize and quantify the network state of the composite under deformation, and the LIT results were found to be strongly correlated with the composite properties. These results highlighted the potential of LIT as a valuable tool for composite characterization and material design.

4.
J Nanosci Nanotechnol ; 21(12): 6151-6159, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34229816

ABSTRACT

In this work, we demonstrate controlled introduction of O-functional groups on commercial carbon nanotube fibers (CNTFs) with different nanotube morphologies obtained by dry- and wet-spinning by treatment with gaseous ozone (O3(g)). Our test samples were (1) wet-spun fibers of smalldiameter (1-2 nm) singlewall (SW)-CNTs and (2) dry-spun fibers containing large-diameter (20 nm) multiwall (MW)-CNTs. Our results indicate that SW-CNTFs undergo oxygenation to a higher extent than MW-CNTFs due to the higher reactivity of SW-CNTs with a larger curvature strain. Oxygenation resulting from O3 exposure was evidenced as increase in surface O atomic% (at% by X-ray photoelectron spectroscopy, XPS) and as reductions in G/D (by Raman spectroscopy) as well as electrical conductivities due to changes in nanotube graphitic structure. By XPS, we identified the emergence of various types of O-functionalities on the fiber surfaces. After long duration O3 exposure (>300 s for SW-CNTFs and >600 s for MW-CNTFs), both sp² C═O (carbonyl) and sp³ C-O moieties (ether/hydroxy) were observed on fiber surfaces. Whereas, only sp³ C-O (ether/hydroxy) components were observed after shorter exposure times. O3 treatment led to only changes in surface chemistry, while the fiber morphology, microstructure and dimensions remained unaltered. We believe the surface chemistry controllability demonstrated here on commercial fibers spun by different methods containing nanotubes of different structures is of significance in aiding the practical application development of CNTFs.


Subject(s)
Nanotubes, Carbon , Ozone , Carbon Fiber , Electric Conductivity , Photoelectron Spectroscopy
5.
RSC Adv ; 10(49): 29419-29423, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-35521114

ABSTRACT

Radical scavenging activities are attractive properties not only for scientific fields e.g. biomedicine, but for the materials industry. In this study, we report that carbon nanotubes (CNTs) can scavenge radicals from organic peroxides, while radicals from azo-type radical initiators exhibit only a few effects from the presence of CNTs. In addition, experimental results suggest the possibility that captured peroxide radicals generate active radical sites on the CNT surface, from which polymerization can take place. These results indicate the importance of selecting an appropriate radical initiator.

6.
Nanoscale ; 11(44): 21487-21492, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31686079

ABSTRACT

Functionalization is a key technique to improving the dispersibility of carbon nanotubes (CNTs) in solvents and polymer matrices for producing versatile CNT-based materials. Therefore, a robust and efficient characterization method is required to confirm that the functionalization on the CNT surface is spatially uniform. Although several imaging techniques for transmission electron microscopes can characterize the spatial localization of elements chemically bound to an isolated CNT surface, they are unsuitable for examinations on a practical scale because of their limited scanning area. Here, we present high spatially resolved energy dispersive X-ray spectrometry (EDS) imaging of functionalized single-walled CNTs (SWCNTs) in scanning electron microscopy (SEM). Highly sensitive EDS detection and drift-free operation enables our technique to image the light elements of SWCNTs with sufficient spatial resolution (<10 nm). We describe an experimental visualization of the spatial distribution of the functionalization on individual SWCNT bundle structures and discuss the CNT de-bundling mechanism via surface modification and the uniformity of the CNT dispersion state.

7.
Sci Rep ; 9(1): 14572, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31601847

ABSTRACT

For realization the new functional materials and devices by conductive nanomaterials, how to control and realize the optimum network structures are import point for fundamental, applied and industrial science. In this manuscript, the nondestructive real-space imaging technique has been studied with the lock-in thermal scope via Joule heating caused by ac bias conditions. By this dynamical method, a few micrometer scale energy dissipations originating from local current density and resistance distributions are visualized in a few tens of minutes due to the frequency-space separation and the strong temperature damping of conductive heat components. Moreover, in the tensile test, the sample broken points were completely corresponding to the intensity images of lock-in thermography. These results indicated that the lock-in thermography is a powerful tool for inspecting the intrinsic network structures, which are difficult to observe by conventional imaging methods.

8.
Nanoscale ; 11(4): 2089, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30644937

ABSTRACT

Correction for 'Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics' by Chandramouli Subramaniam and Kenji Hata et al., Nanoscale, 2014, 6, 2669-2674.

9.
R Soc Open Sci ; 5(11): 180814, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30564393

ABSTRACT

We present research progress made in developing copper/carbon nanotube composites (Cu/CNT) to fulfil a growing demand for lighter copper substitutes with superior electrical, thermal and mechanical performances. Lighter alternatives to heavy copper electrical and data wiring are needed in automobiles and aircrafts to enhance fuel efficiencies. In electronics, better interconnects and thermal management components than copper with higher current- and heat-stabilities are required to enable device miniaturization with increased functionality. Our literature survey encouragingly indicates that Cu/CNT performances (electrical, thermal and mechanical) reported so far rival that of Cu, proving the material's viability as a Cu alternative. We identify two grand challenges to be solved for Cu/CNT to replace copper in real-life applications. The first grand challenge is to fabricate Cu/CNT with overall performances exceeding that of copper. To address this challenge, we propose research directions to fabricate Cu/CNT closer to ideal composites theoretically predicted to surpass Cu performances (i.e. those containing uniformly distributed Cu and individually aligned CNTs with beneficial CNT-Cu interactions). The second grand challenge is to industrialize and transfer Cu/CNT from lab bench to real-life use. Toward this, we identify and propose strategies to address market-dependent issues for niche/mainstream applications. The current best Cu/CNT performances already qualify for application in niche electronic device markets as high-end interconnects. However, mainstream Cu/CNT application as copper replacements in conventional electronics and in electrical/data wires are long-term goals, needing inexpensive mass-production by methods aligned with existing industrial practices. Mainstream electronics require cheap CNT template-making and electrodeposition procedures, while data/electrical cables require manufacture protocols based on co-electrodeposition or melt-processing. We note (with examples) that initiatives devoted to Cu/CNT manufacturing for both types of mainstream applications are underway. With sustained research on Cu/CNT and accelerating its real-life application, we expect the successful evolution of highly functional, efficient, and sustainable next-generation electrical and electronics systems.

10.
Nanoscale Res Lett ; 12(1): 616, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29214484

ABSTRACT

We propose a porosimetry-based method to characterize pores formed by carbon nanotubes (CNTs) in the CNT agglomerates for designing neat CNT-based materials and composites. CNT agglomerates contain pores between individual CNTs and/or CNT bundles (micropore < 2 nm, mesopores 2-50 nm, and macropores > 50 nm). We investigated these pores structured by CNTs with different diameters and number of walls, clarifying the broader size distribution and the larger volume with increased diameters and number of walls. Further, we demonstrated that CNT agglomerate structures with different bulk density were distinguished depending on the pore sizes. Our method also revealed that CNT dispersibility in solvent correlated with the pore sizes of CNT agglomerates. By making use of these knowledge on tailorable pores for CNT agglomerates, we successfully found the correlation between electrical conductivity for CNT rubber composites and pore sizes of CNT agglomerates. Therefore, our method can distinguish diverse CNT agglomerate structures and guide pore sizes of CNT agglomerates to give high electrical conductivity of CNT rubber composites.

11.
Sci Rep ; 7(1): 9267, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839278

ABSTRACT

We report ultralong conducting lightweight multiwall carbon nanotube (MWCNT)-Cu composite wires with MWCNTs uniformly distributed in a continuous Cu matrix throughout. With a high MWCNT vol% (40-45%), the MWCNT-Cu wire density was 2/3rd that of Cu. Our composite wires show manufacturing potential because we used industrially compatible Cu electrodeposition protocols on commercial CNT wires. Further, we systematically varied Cu spatial distribution on the composite wire surface and bulk and measured the associated electrical performance, including resistivity (ρ), temperature dependence of resistance, and stability to current (measured as current carrying capacity, CCC in vacuum). We find that a continuous Cu matrix with homogeneous MWCNT distribution, i.e., maximum internal Cu filling within MWCNT wires, is critical to high overall electrical performances. Wires with maximum internal Cu filling exhibit (i) low room temperature ρ, 1/100th of the starting MWCNT wires, (ii) suppressed resistance-rise with temperature-increase and temperature coefficient of resistance (TCR) ½ that of Cu, and (iii) vacuum-CCC 28% higher than Cu. Further, the wires showed real-world applicability and were easily soldered into practical circuits. Hence, our MWCNT-Cu wires are promising lightweight alternatives to Cu wiring for weight-reducing applications. The low TCR is specifically advantageous for stable high-temperature operation, e.g., in motor windings.

12.
Nanoscale ; 8(7): 3888-94, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26486752

ABSTRACT

New lithographically processable materials with high ampacity are in demand to meet the increasing requirement for high operational current density at high temperatures existing in current pathways within electronic devices. To meet this demand, we report an approach to fabricate a high ampacity (∼100 times higher than Cu) carbon nanotube-copper (CNT-Cu) composite into a variety of complex nano-scale, planar and multi-tiered current pathways. The approach involved the use of a two-stage electrodeposition of copper into a pre-patterned template of porous, thin CNT sheets acting as the electrode. The versatility of this approach enabled the realization of completely suspended multi-tier, dielectric-less 'air-gap' CNT-Cu circuits that could be electrically isolated from each other and are challenging to fabricate with pure Cu or any metal. Importantly, all such complex structures, ranging from 500 nm to 20 µm in width, exhibited ∼100-times higher ampacity than any known metal, with comparable electrical conductivity as Cu. In addition, CNT-Cu structures also exhibited a superior temperature stability compared to the ∼10-times wider Cu counterparts. We believe that the combination of our approach and the properties demonstrated here are vital achievements for the future development of efficient and powerful electrical devices.

13.
Nano Lett ; 15(9): 5716-23, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26218988

ABSTRACT

Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used.


Subject(s)
Clothing , Elasticity , Electronics/instrumentation , Nanotubes, Carbon/chemistry , Polymers/chemistry , Textiles , Transistors, Electronic , Elastomers , Equipment Design , Humans , Nanotechnology/instrumentation , Textiles/analysis
14.
Nanomaterials (Basel) ; 5(3): 1200-1210, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-28347060

ABSTRACT

One aspect of carbon nanotube (CNT) synthesis that remains an obstacle to realize industrial mass production is the growth efficiency. Many approaches have been reported to improve the efficiency, either by lengthening the catalyst lifetime or by increasing the growth rate. We investigated the applicability of dwell time and carbon flux control to optimize yield, growth rate, and catalyst lifetime of water-assisted chemical vapor deposition of single-walled carbon nanotube (SWCNT) forests using acetylene as a carbon feedstock. Our results show that although acetylene is a precursor to CNT synthesis and possesses a high reactivity, the SWCNT forest growth efficiency is highly sensitive to dwell time and carbon flux similar to ethylene. Through a systematic study spanning a wide range of dwell time and carbon flux levels, the relationship of the height, growth rate, and catalyst lifetime is found. Further, for the optimum conditions for 10 min growth, SWCNT forests with ~2500 µm height, ~350 µm/min initial growth rates and extended lifetimes could be achieved by increasing the dwell time to ~5 s, demonstrating the generality of dwell time control to highly reactive gases.

15.
Adv Mater ; 26(33): 5857-62, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25042211

ABSTRACT

Electrostatic flocking is applied to create an array of aligned carbon fibers from which an elastomeric thermal interface material (TIM) can be fabricated with a high through-plane thermal conductivity of 23.3 W/mK. A high thermal conductivity can be achieved with a significantly low filler level (13.2 wt%). As a result, this material retains the intrinsic properties of the matrix, i.e., elastomeric behavior.

16.
Sci Rep ; 4: 3907, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24469607

ABSTRACT

We propose an approach to disperse long single-wall carbon nanotubes (SWCNTs) in a manner that is most suitable for the fabrication of high-performance composites. We compare three general classes of dispersion mechanisms, which encompass 11 different dispersion methods, and we have dispersed long SWCNTs, short multi-wall carbon nanotubes, and short SWCNTs in order to understand the most appropriate dispersion methods for the different types of CNTs. From this study, we have found that the turbulent flow methods, as represented by the Nanomizer and high-pressure jet mill methods, produced unique and superior dispersibility of long SWCNTs, which was advantageous for the fabrication of highly conductive composites. The results were interpreted to imply that the biaxial shearing force caused an exfoliation effect to disperse the long SWCNTs homogeneously while suppressing damage. A conceptual model was developed to explain this dispersion mechanism, which is important for future work on advanced CNT composites.

17.
Nanoscale ; 6(5): 2669-74, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24441433

ABSTRACT

Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low thermal distortion parameter (TDP). Thus, this material presents a viable and efficient alternative to existing materials for thermal management in electronics.

18.
ACS Appl Mater Interfaces ; 5(23): 12602-8, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24221814

ABSTRACT

We propose a fabrication method for carbon nanotube (CNT) nonwoven fabrics based on an ancient Japanese papermaking process where paper is made from natural plant fibers. In our method, CNT nonwoven fabrics are made by a scalable process of filtering binder-free, aqueous suspensions of CNTs. The aqueous suspension of these entangled single-walled carbon nanotube (SWNT) aggregates enabled smooth filtration through a cellulose filter with large pores (8 µm). The "wet SWNT cakes," which were composed solely of SWNT and water and obtained after filtration, were press-dried to fabricate an SWNT nonwoven fabric. This environmentally friendly process employs water and the raw CNT material alone. Moreover, the scalability of this process was demonstrated by manufacturing a large area (A3, 30 × 42 cm; thickness: 40-150 µm), self-supporting SWNT nonwoven fabric with a density of 0.4 g/cm(3), a basis weight of 0.2 g/m(2) , a porosity of 63%, and a specific surface area of 740 m(2)/g. This SWNT nonwoven fabric is anticipated to find application as functional particle-supported sheets, electrode materials, and filters.

19.
Nat Commun ; 4: 2202, 2013.
Article in English | MEDLINE | ID: mdl-23877359

ABSTRACT

Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube-copper composite exhibiting similar conductivity (2.3-4.7 × 10(5) S cm(-1)) as copper (5.8 × 10(5) S cm(-1)), but with a 100-times higher ampacity (6 × 10(8) A cm(-2)). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (~2.0 eV) in carbon nanotube-copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters.

20.
ACS Nano ; 7(4): 3177-82, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23464614

ABSTRACT

A rational torsion sensing material was fabricated by wrapping aligned single-walled carbon nanotube (SWCNT) thin films onto the surface of a rod with a predetermined and fixed wrapping angle without destroying the internal network of the SWCNTs within the film. When applied as a torsion sensor, torsion could be measured up to 400 rad/meter, that is, more than 4 times higher than conventional optical fiber torsion sensors, by monitoring increases in resistance due to fracturing of the aligned SWCNT thin films.


Subject(s)
Membranes, Artificial , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Stress, Mechanical , Surface Properties , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...