Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
Chemistry ; 30(27): e202304335, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38418426

ABSTRACT

Immobilized Pd-catalyzed Suzuki-Miyaura coupling under continuous-flow conditions using a packed-bed reactor, representing an efficient, automated, practical, and safe technology compared to conventional batch-type reactions. The core objective of this study is the development of an active and durable catalyst. In contrast to supported Pd nanoparticles, the attachment of Pd complexes onto solid supports through well-defined coordination sites is considered a favorable approach for preparing highly dispersed and stabilized Pd species. These species can be directly employed in various flow reactions without the need for pre-treatment. This concept paper explores recent achievements involving the application of immobilized Pd complexes as precatalysts for continuous-flow Suzuki-Miyaura coupling. Our focus is to elucidate the significance of the designed catalyst structures in relation to their catalytic performance under flow conditions. Additionally, we highlight various reaction systems and catalyst packing methods, emphasizing their crucial roles in establishing a practical synthesis process.

2.
J Chem Inf Model ; 63(18): 5764-5772, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37655841

ABSTRACT

Highly active catalysts are required in numerous industrial fields; therefore, to minimize costs and development time, catalyst design using machine learning has attracted significant attention. This study focused on a reaction system where two types of cross-coupling reactions, namely, Buchwald-Hartwig type cross-coupling (BHCC) and Suzuki-Miyaura type cross-coupling (SMCC) reactions, occur simultaneously. Constructing a machine-learning model that considers all experimental conditions is essential to accurately predict the product yield for both the BHCC and the SMCC reactions. The objective of this study was to establish explanatory variables x that considered all experimental conditions within the reaction system involving simultaneous cross-couplings and to design catalysts that achieve the target yield and the development of novel reactions. To accomplish this, Bayesian optimization was combined with established variables x to design new catalysts and enhance reaction selectivity. Moreover, the catalyst design in this study successfully pioneered new reactions involving Cu, Rh, and Pt catalysts in a reaction system that did not previously react with transition metals other than Ni or Pd.


Subject(s)
Bayes Theorem , Catalysis
3.
Chemistry ; 29(34): e202300494, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37204093

ABSTRACT

Given that heterogeneous palladium-catalyzed C-C bond formation reactions under continuous-flow conditions are well suited for the efficient and safe production of pharmaceuticals and functional materials, the development of active and durable catalysts for this purpose is a matter of high practical significance. Here, a previously established molecular convolution methodology was used to synthesize catalysts for Suzuki-Miyaura coupling under flow conditions by blending convoluted polymeric palladium catalysts (prepared from copolymers of 4-vinylpyridine and 4-tert-butylstyrene) and crosslinked polymeric auxiliary materials (prepared from copolymers of divinylbenzene and 4-tert-butylstyrene). The optimal catalyst exhibited high performance and durability and allowed numerous biaryl products such as liquid-crystalline materials, organic electroluminescent materials, and pharmaceuticals to be continuously synthesized with turnover frequencies of up to 238 h-1 . In a demonstration of practical utility, the developed catalytic system was used for the continuous synthesis of two pharmaceuticals (felbinac and fenbufen) in water as the sole solvent.

5.
Commun Chem ; 6(1): 29, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765132

ABSTRACT

Nitrile derivatives are important building blocks in organic synthesis. Herein, we report the serendipitous discovery of an oxygen transfer reaction that produces hydroxyalkyl nitriles from the sequential dehydration and hydrolysis of haloalkyl amides. Product yields of up to 91% were achieved, and the phenylboronic acid was recovered as triphenylboroxine. The triphenylboroxine was reused as a catalyst without any loss of catalytic activity. A probable catalytic pathway was proposed based on control experiments and DFT calculations.

6.
ACS Omega ; 7(28): 24184-24189, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35874269

ABSTRACT

In this study, a phenylboronic ester-activated aryl iodide-selective Buchwald-Hartwig-type amination was developed. When the reaction of aryl iodides and aryl/aliphatic amines using Ni(acac)2 is carried out in the presence of phenylboronic ester, the Buchwald-Hartwig-type amination proceeds smoothly to afford the corresponding amines in high yields. This reaction does not proceed in the absence of phenylboronic ester. A wide variety of aryl iodides can be applied in the presence of aryl chlorides and bromides, which remain intact during the reaction. The mechanistic studies of this reaction suggest that the phenylboronic ester acts as an activator for the amines to form the ″ate complex″. Chemical kinetics studies show that the reaction of aryl iodides, base, and Ni(acac)2 follows first-order kinetics, while that of amines and phenylboronic ester follows zero-order kinetics. The bioactivity screening of the corresponding products showed that some amination products exhibit antifungal activity.

7.
JACS Au ; 1(11): 2080-2087, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34841419

ABSTRACT

A convoluted poly(4-vinylpyridine) cobalt(II) (P4VP-CoCl2) system was developed as a stable and reusable heterogeneous catalyst. The local structure near the Co atom was determined on the basis of experimental data and theoretical calculations. This immobilized cobalt catalyst showed high selectivity and catalytic activity in the [2 + 2 + 2] cyclotrimerization of terminal aryl alkynes. With 0.033 mol % P4VP-CoCl2, the regioselective formation of 1,3,5-triarylbenzene was realized without 1,2,4-triarylbenzene formation. Further, a multigram-scale (11 g) reaction proceeded efficiently. In addition, the polymer-supported catalyst was successfully recovered and used three times. X-ray photoelectron spectroscopy analysis of the recovered catalyst suggested that cobalt was in the +2 oxidation state. The 1,3,5-triarylbenzene derivatives were applied to the synthesis of a molecular beam electron resist and a polycyclic aromatic hydrocarbon.

8.
Sci Rep ; 11(1): 20505, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675322

ABSTRACT

We demonstrated microwave-assisted photooxidation of sulfoxides to the corresponding sulfones using ethynylbenzene as a photosensitizer. Efficiency of the photooxidation was higher under microwave irradiation than under conventional thermal heating conditions. Under the conditions, ethynylbenzene promoted the oxidation more efficiently than conventional photosensitizers benzophenone, anthracene, and rose bengal. Ethynylbenzene, whose T1 state is extremely resistant to intersystem crossing to the ground state, was suitable to this reaction because spectroscopic and related reported studies suggested that this non-thermal effect was caused by elongating lifetime of the T1 state by microwave. This is the first study in which ethynylbenzene is used as a photosensitizer in a microwave-assisted photoreaction.

9.
ACS Omega ; 6(41): 27578-27586, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34693179

ABSTRACT

To improve product yields in synthetic reactions, it is important to use appropriate catalysts. In this study, we used machine learning to design catalysts for a reaction system in which both Buchwald-Hartwig-type and Suzuki-Miyaura-type cross-coupling reactions proceed simultaneously. First, using an existing dataset, yield prediction models were constructed with machine learning between experimental conditions, including the substrate and catalyst and the yields of the two products. Seven methods for calculating both the substrate and catalyst descriptors were proposed, and the predictive ability of the yield prediction models was discussed in terms of the descriptors and machine learning methods. Then, the constructed models were used to predict the compound yields for new combinations of substrates and catalysts, and the predictions were experimentally validated with high reproducibility, confirming that machine learning can predict yields from experimental conditions with high accuracy. In addition, to design catalysts that will improve the yields in our dataset, we added datasets collected from scientific papers and designed catalyst ligands. The proposed catalyst candidates were tested in actual synthetic experiments, and the experimental results exceeded the existing yields.

10.
ACS Omega ; 5(41): 26938-26945, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33111021

ABSTRACT

We describe the development of the catalytic reductive alkylation of amines with aldehydes under the atmospheric pressure of H2 using a brush-like silicon-nanostructure-supported palladium nanoparticle composite (SiNS-Pd) as a silicon-wafer-based reusable heterogeneous catalyst. The present reaction of primary and secondary amines with various aliphatic and aromatic aldehydes in the presence of the catalyst (0.02-0.05 mol % Pd) gave the corresponding secondary and tertiary amines including Lomerizine and Aticaprant in a 68% quantitative yield without overalkylation. We also designed and fabricated a flow device equipped with SiNS-Pd for microflow reactions, which was applied to the gas-liquid-solid triphasic reaction system (i.e., H2 gas, a substrate solution, and a solid catalyst). A multigram-scale reaction of aniline and benzaldehyde was demonstrated to obtain N-benzylaniline (ca. 4 g/day), in which the internal volume of the flow channel was 43 µL, the residence time was approximately 1 s, and the turnover number (TON) reached 4.0 × 104 in a continuous 24 h run (1.7 × 103 h-1; 0.50 s-1).

11.
Nat Commun ; 11(1): 5181, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33057004

ABSTRACT

The performance of transition metal hydroxides, as cocatalysts for CO2 photoreduction, is significantly limited by their inherent weaknesses of poor conductivity and stacked structure. Herein, we report the rational assembly of a series of transition metal hydroxides on graphene to act as a cocatalyst ensemble for efficient CO2 photoreduction. In particular, with the Ru-dye as visible light photosensitizer, hierarchical Ni(OH)2 nanosheet arrays-graphene (Ni(OH)2-GR) composites exhibit superior photoactivity and selectivity, which remarkably surpass other counterparts and most of analogous hybrid photocatalyst system. The origin of such superior performance of Ni(OH)2-GR is attributed to its appropriate synergy on the enhanced adsorption of CO2, increased active sites for CO2 reduction and improved charge carriers separation/transfer. This work is anticipated to spur rationally designing efficient earth-abundant transition metal hydroxides-based cocatalysts on graphene and other two-dimension platforms for artificial reduction of CO2 to solar chemicals and fuels.

12.
Chemistry ; 26(58): 13107, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32870511

ABSTRACT

Invited for the cover of this issue is Ken Kamikawa and co-workers at Osaka Prefecture University and RIKEN Center for Sustainable Resource Science. The image depicts an S-shaped double azahelicene capturing the palladium in a trans-chelating fashion. Read the full text of the article at 10.1002/chem.202002405.

13.
Proc Natl Acad Sci U S A ; 117(37): 22873-22879, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32900930

ABSTRACT

All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life's emergence suggests that organics could have been produced by the reduction of CO2 via H2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog-and proposed evolutionary predecessor-of the Wood-Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO2 with H2 to formate (HCOO-), which has proven elusive in mild abiotic settings. Here we show the reduction of CO2 with H2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with 13C confirmed formate production. Separately, deuterium (2H) labeling indicated that electron transfer to CO2 does not occur via direct hydrogenation with H2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H2, or eliminating the precipitate yielded no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.


Subject(s)
Carbon Dioxide/chemistry , Carbon Cycle , Electron Transport , Hydrogen/chemistry , Hydrogen-Ion Concentration , Hydrothermal Vents/chemistry , Oxidation-Reduction , Proton-Motive Force
14.
Org Lett ; 22(12): 4797-4801, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32484355

ABSTRACT

Herein, we report the development of aryl halide-dependent chemoselective reactions, viz., the Buchwald-Hartwig type coupling reaction of an aryl iodide with an arylboronic acid and an aryl amine in the presence of a heterogeneous and reusable nickel catalyst and the Suzuki-Miyaura type coupling of an aryl chloride under similar conditions. Control experiments revealed that the presence of stoichiometric amounts of the phenylboronic acid/ester and aryl amine are essential for both reactions. NMR and XAFS studies suggested the formation of a boron-amine "ate" complex.

15.
Chemistry ; 26(58): 13170-13176, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32459379

ABSTRACT

An S-shaped double azahelicene (1) was synthesized in excellent yield by a palladium-catalyzed double dehydrogenative C-H coupling reaction. The stereochemistry of 1 was confirmed to be dl by single-crystal X-ray diffraction analysis. Selective formation of dl-1 was attributed to the isomerization of the kinetically controlled product (meso-1) into the more thermodynamically stable dl-1 under the applied reaction conditions. dl-1 can coordinate to palladium(II) in a bidentate trans-chelating fashion, which was confirmed by X-ray absorption fine structure (XAFS) as well as by X-ray photoelectron spectroscopy (XPS), diffuse reflectance (DR) UV/Vis, and far-infrared (FIR) absorption spectroscopy. Theoretical calculations of palladium complex 16 revealed a weak attractive interaction between palladium and carbon atoms on the central dimethoxynaphthalene core, which could facilitate a disproportionation between a trans-chelating (dl-1)⋅PdCl2 complex and PdCl2 to form 16.

16.
Chemistry ; 26(26): 5729-5747, 2020 May 07.
Article in English | MEDLINE | ID: mdl-31916323

ABSTRACT

The increased demand for more efficient, safe, and green production in fine chemical and pharmaceutical industry calls for the development of continuous-flow manufacturing, and for chiral chemicals in particular, enantioselective catalytic processes. In recent years, this emerging direction has received considerable attention and has seen rapid progress. In most cases, catalytic enantioselective flow processes using homogeneous, heterogeneous, or enzymatic catalysts have shown significant advantages over the conventional batch mode, such as shortened reaction times, lower catalysts loadings, and higher selectivities in addition to the normal merits of non-enantioselective flow operations. In this Minireview, the advancements, key strategies, methods, and technologies developed the last six years as well as remaining challenges are summarized.

17.
Org Lett ; 22(1): 160-163, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31841008

ABSTRACT

A second-generation m-phenolsulfonic acid-formaldehyde resin (PAFR II) catalyst was prepared by condensation polymerization of sodium m-phenolsulfonate and paraformaldehyde in an aqueous H2SO4 solution. This reusable, robust acid resin catalyst was improved in both catalytic activity and stability, maintaining the characteristics of the previous generation catalyst (p-phenolsulfonic acid-formaldehyde resin). PAFR II was applied in the batchwise and continuous-flow direct esterification without water removal and provided higher product yields in continuous-flow esterification than any other commercial ion-exchanged acid catalyst tested.

18.
Commun Chem ; 3(1): 81, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-36703481

ABSTRACT

Heterogeneous catalysis of alkenes to alkanes is of great importance in chemical industry, but more efficient and reusable heterogeneous catalysts are still demanded. Here, we report a metallically gradated composite of a silicon nanowire array and palladium nanoparticles which are reused for the hydrogenation of an alkene. The catalyst promotes the hydrogenation of stilbene with atmospheric hydrogen (0.1 MPa) to give diphenylethane quantitatively. The recovered catalyst can be reused, and mediates the reaction without loss of yield more than one hundred times, whereas the stability of Pd/C degrades rapidly over 10 cycles of reuse. The catalyst allows the hydrogenation of a variety of alkenes, including tetra-substituted olefins. Structural investigation reveals that palladium nanoparticles are metallically gradated onto the silicon nanowire array under mild conditions by agglomeration of palladium silicide, as confirmed by XAFS and XPS together with argon-ion sputtering. This means of metal agglomeration immobilization may be applicable to the preparation of a variety of metal nanoparticle catalysts.

19.
Life (Basel) ; 9(1)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717250

ABSTRACT

The alkaline-hydrothermal-vent theory for the origin of life predicts the spontaneous reduction of CO2, dissolved in acidic ocean waters, with H2 from the alkaline vent effluent. This reaction would be catalyzed by Fe(Ni)S clusters precipitated at the interface, which effectively separate the two fluids into an electrochemical cell. Using microfluidic reactors, we set out to test this concept. We produced thin, long Fe(Ni)S precipitates of less than 10 µm thickness. Mixing simplified analogs of the acidic-ocean and alkaline-vent fluids, we then tested for the reduction of CO2. We were unable to detect reduced carbon products under a number of conditions. As all of our reactions were performed at atmospheric pressure, the lack of reduced carbon products may simply be attributable to the low concentration of hydrogen in our system, suggesting that high-pressure reactors may be a necessity.

20.
Chem Pharm Bull (Tokyo) ; 65(9): 805-821, 2017.
Article in English | MEDLINE | ID: mdl-28867707

ABSTRACT

My mission in catalysis research is to develop highly active and reusable supported catalytic systems in terms of fundamental chemistry and industrial application. For this purpose, I developed three types of highly active and reusable supported catalytic systems. The first type involves polymeric base-supported metal catalysts: Novel polymeric imidazole-Pd and Cu complexes were developed that worked at the mol ppm level for a variety of organic transformations. The second involves catalytic membrane-installed microflow reactors: Membranous polymeric palladium and copper complex/nanoparticle catalysts were installed at the center of a microtube to produce novel catalytic membrane-immobilized flow microreactor devices. These catalytic devices mediated a variety of organic transformations to afford the corresponding products in high yield within 1-38 s. The third is a silicon nanowire array-immobilized palladium nanoparticle catalyst. This device promoted a variety of organic transformations as a heterogeneous catalyst. The Mizoroki-Heck reaction proceeded with 280 mol ppb (0.000028 mol%) of the catalyst, affording the corresponding products in high yield.


Subject(s)
Coordination Complexes/chemistry , Catalysis , Copper/chemistry , Imidazoles/chemistry , Nanoparticles/chemistry , Nanowires/chemistry , Palladium/chemistry , Silicon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL