Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13100, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37567940

ABSTRACT

Dry eye syndrome (DES) is a chronic ocular disease that induces epithelial damage to the cornea by decreasing tear production and quality. Adequate treatment options have not been established for severe DES such as Sjogren's syndrome due to complicated pathological conditions. To solve this problem, we focused on the conditioned medium of human adipose-derived mesenchymal stem cells (hAdMSC-CM), which have multiple therapeutic properties. Here, we showed that hAdMSC-CM suppressed Benzalkonium Chloride (BAC)-induced cytotoxicity and inflammation in human corneal epithelial cells (hCECs). In addition, hAdMSC-CM increased the expression level and regulated the localisation of barrier function-related components, and improved the BAC-induced barrier dysfunction in hCECs. RNA-seq analysis and pharmacological inhibition experiments revealed that the effects of hAdMSC-CM were associated with the TGFß and JAK-STAT signalling pathways. Moreover, in DES model rats with exorbital and intraorbital lacrimal gland excision, ocular instillation of hAdMSC-CM suppressed corneal epithelial damage by improving barrier dysfunction of the cornea. Thus, we demonstrated that hAdMSC-CM has multiple therapeutic properties associated with TGFß and JAK-STAT signalling pathways, and ocular instillation of hAdMSC-CM may serve as an innovative therapeutic agent for DES by improving corneal barrier function.


Subject(s)
Corneal Injuries , Dry Eye Syndromes , Mesenchymal Stem Cells , Rats , Humans , Animals , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Dry Eye Syndromes/drug therapy , Cornea/pathology , Corneal Injuries/pathology , Transforming Growth Factor beta/metabolism , Mesenchymal Stem Cells/metabolism
2.
Biochemistry ; 58(51): 5112-5116, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31825604

ABSTRACT

The myo-inositol-1-phosphate synthase (MIPS) ortholog Ari2, which is encoded in the aristeromycin biosynthetic gene cluster, catalyzes the formation of five-membered cyclitol phosphate using d-fructose 6-phosphate (F6P) as a substrate. To understand the stereochemistry during the Ari2 reaction in vivo, we carried out feeding experiments with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]glucose in the aristeromycin-producing strain Streptomyces citricolor. We observed retention of the 2H atom of (6S)-d-[6-2H1]glucose and no incorporation of the 2H atom from (6R)-d-[6-2H1]glucose in aristeromycin. This indicates that Ari2 abstracts the pro-R proton at C6 of F6P after oxidation of C5-OH by nicotinamide adenine dinucleotide (NAD+) to generate the enolate intermediate, which then attacks the C2 ketone to form the C-C bond via aldol-type condensation. The reaction of Ari2 with (6S)-d-[6-2H1]- and (6R)-d-[6-2H1]F6P in vitro exhibited identical stereochemistry compared with that observed during the feeding experiments. Furthermore, analysis of the crystal structure of Ari2, including NAD+ as a ligand, revealed the active site of Ari2 to be similar to that of MIPS of Mycobacterium tuberculosis, supporting the similarity of the reaction mechanisms of Ari2 and MIPS.


Subject(s)
Adenosine/analogs & derivatives , Myo-Inositol-1-Phosphate Synthase/metabolism , Adenosine/biosynthesis , Adenosine/chemistry , Models, Molecular , Myo-Inositol-1-Phosphate Synthase/chemistry , Protein Conformation , Stereoisomerism , Streptomyces/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...