Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 86(22)2020 10 28.
Article in English | MEDLINE | ID: mdl-32917754

ABSTRACT

Syringate and vanillate are the major metabolites of lignin biodegradation. In Sphingobium sp. strain SYK-6, syringate is O demethylated to gallate by consecutive reactions catalyzed by DesA and LigM, and vanillate is O demethylated to protocatechuate by a reaction catalyzed by LigM. The gallate ring is cleaved by DesB, and protocatechuate is catabolized via the protocatechuate 4,5-cleavage pathway. The transcriptions of desA, ligM, and desB are induced by syringate and vanillate, while those of ligM and desB are negatively regulated by the MarR-type transcriptional regulator DesR, which is not involved in desA regulation. Here, we clarified the regulatory system for desA transcription by analyzing the IclR-type transcriptional regulator desX, located downstream of desA Quantitative reverse transcription (RT)-PCR analyses of a desX mutant indicated that the transcription of desA was negatively regulated by DesX. In contrast, DesX was not involved in the regulation of ligM and desB The ferulate catabolism genes (ferBA), under the control of a MarR-type transcriptional regulator, FerC, are located upstream of desA RT-PCR analyses suggested that the ferB-ferA-SLG_25010-desA gene cluster consists of the ferBA operon and the SLG_25010-desA operon. Promoter assays revealed that a syringate- and vanillate-inducible promoter is located upstream of SLG_25010. Purified DesX bound to this promoter region, which overlaps an 18-bp inverted-repeat sequence that appears to be essential for the DNA binding of DesX. Syringate and vanillate inhibited the DNA binding of DesX, indicating that the compounds are effector molecules of DesX.IMPORTANCE Syringate is a major degradation product in the microbial and chemical degradation of syringyl lignin. Along with other low-molecular-weight aromatic compounds, syringate is produced by chemical lignin depolymerization. Converting this mixture into value-added chemicals using bacterial metabolism (i.e., biological funneling) is a promising option for lignin valorization. To construct an efficient microbial lignin conversion system, it is necessary to identify and characterize the genes involved in the uptake and catabolism of lignin-derived aromatic compounds and to elucidate their transcriptional regulation. In this study, we found that the transcription of desA, encoding syringate O-demethylase in SYK-6, is regulated by an IclR-type transcriptional regulator, DesX. The findings of this study, combined with our previous results on desR (encoding a MarR transcriptional regulator that controls the transcription of ligM and desB), provide an overall picture of the transcriptional-regulatory systems for syringate and vanillate catabolism in SYK-6.


Subject(s)
Bacterial Proteins/genetics , Gallic Acid/analogs & derivatives , Oxidoreductases, O-Demethylating/genetics , Sphingomonadaceae/genetics , Vanillic Acid/metabolism , Bacterial Proteins/metabolism , Gallic Acid/metabolism , Oxidoreductases, O-Demethylating/metabolism , Sphingomonadaceae/metabolism
2.
PLoS One ; 15(5): e0232049, 2020.
Article in English | MEDLINE | ID: mdl-32421692

ABSTRACT

Lentinula edodes, commonly known as shiitake, is an edible mushroom that is cultivated and consumed around the globe, especially in Asia. Monitoring mycelial growth inside a woody substrate is difficult, but it is essential for effective management of mushroom cultivation. Mycelial biomass also affects the rate of wood decomposition under natural conditions and must be known to determine the metabolic quotient, an important ecophysiological parameter of fungal growth. Therefore, developing a method to measure it inside a substrate would be very useful. In this study, as the first step in understanding species-specific rates of fungal decomposition of wood, we developed species-specific primers and qPCR procedures for L. edodes. We tested primer specificity using strains of L. edodes from Japan and Southeast Asia, as well as related species of fungi and plant species for cultivation of L. edodes, and generated a calibration curve for quantification of mycelial biomass in wood dust inoculated with L. edodes. The qPCR procedure we developed can specifically detect L. edodes and allowed us to quantify the increase in L. edodes biomass in wood dust substrate and calculate the metabolic quotient based on the mycelial biomass and respiration rate. Development of a species-specific method for biomass quantification will be useful for both estimation of mycelial biomass and determining the kinetics of fungal growth in decomposition processes.


Subject(s)
Biomass , DNA, Fungal/metabolism , Real-Time Polymerase Chain Reaction , Shiitake Mushrooms/genetics , DNA Primers/metabolism , DNA, Fungal/isolation & purification , Respiratory Rate , Shiitake Mushrooms/growth & development , Species Specificity
3.
Biosci Biotechnol Biochem ; 81(1): 102-111, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27691719

ABSTRACT

Tricholoma matsutake, a basidiomycete, forms ectomycorrhizas with Pinus densiflora as the host tree. Its fruiting body, "matsutake" in Japanese, is an edible and highly prized mushroom, and it grows in a circle called a fairy ring. Beneath the fairy ring of T. matsutake, a whitish mycelium-soil aggregated zone, called "shiro" in Japanese, develops. The front of the shiro, an active mycorrhizal zone, functions to gather nutrients from the soil and roots to nourish the fairy ring. Bacteria and sporulating fungi decrease from the shiro front, whereas they increase inside and outside the shiro front. Ohara demonstrated that the shiro front exhibited antimicrobial activity, but the antimicrobial substance has remained unidentified for 50 years. We have identified the antimicrobial substance as the (oxalato)aluminate complex, known as a reaction product of oxalic acid and aluminum phosphate to release soluble phosphorus. The complex protects the shiro from micro-organisms, and contributes to its development.


Subject(s)
Aluminum/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Oxalates/chemistry , Soil Microbiology , Tricholoma/drug effects , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Fungi/drug effects , Microbial Sensitivity Tests , Organometallic Compounds/isolation & purification
4.
Mycorrhiza ; 26(8): 847-861, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27371100

ABSTRACT

Tricholoma matsutake is an ectomycorrhizal basidiomycete that produces prized, yet uncultivable, "matsutake" mushrooms along densely developed mycelia, called "shiro," in the rhizosphere of coniferous forests. Pinus densiflora is a major host of this fungus in Japan. Measuring T. matsutake biomass in soil allows us to determine the kinetics of fungal growth before and after fruiting, which is useful for analyzing the conditions of the shiro and its surrounding mycorrhizosphere, predicting fruiting timing, and managing forests to obtain better crop yields. Here, we document a novel method to quantify T. matsutake mycelia in soil by quantifying a single-copy DNA element that is uniquely conserved within T. matsutake but is absent from other fungal species, including close relatives and a wide range of ectomycorrhizal associates of P. densiflora. The targeted DNA region was amplified quantitatively in cultured mycelia that were mixed with other fungal species and soil, as well as in an in vitro co-culture system with P. densiflora seedlings. Using this method, we quantified T. matsutake mycelia not only from shiro in natural environments but also from the surrounding soil in which T. matsutake mycelia could not be observed by visual examination or distinguished by other means. It was demonstrated that the core of the shiro and its underlying area in the B horizon are predominantly composed of fungal mycelia. The fungal mass in the A or A0 horizon was much lower, although many white mycelia were observed at the A horizon. Additionally, the rhizospheric fungal biomass peaked during the fruiting season.


Subject(s)
DNA, Fungal/genetics , Polymerase Chain Reaction/methods , Tricholoma/physiology , Biomass , Genetic Markers , Genome, Fungal , Kinetics , Mycelium , Sensitivity and Specificity , Serine Endopeptidases , Soil Microbiology , Species Specificity
5.
Mycorrhiza ; 23(6): 447-61, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23440576

ABSTRACT

"Matsutake" mushrooms are formed by several species of Tricholoma sect. Caligata distributed across the northern hemisphere. A phylogenetic analysis of matsutake based on virtually neutral mutations in DNA sequences resolved robust relationships among Tricholoma anatolicum, Tricholoma bakamatsutake, Tricholoma magnivelare, Tricholoma matsutake, and Tricholoma sp. from Mexico (=Tricholoma sp. Mex). However, relationships among these matsutake and other species, such as Tricholoma caligatum and Tricholoma fulvocastaneum, were ambiguous. We, therefore, analyzed genomic copy numbers of σ marY1 , marY1, and marY2N retrotransposons by comparing them with the single-copy mobile DNA megB1 using real-time polymerase chain reaction (PCR) to clarify matsutake phylogeny. We also examined types of megB1-associated domains, composed of a number of poly (A) and poly (T) reminiscent of RNA-derived DNA elements among these species. Both datasets resolved two distinct groups, one composed of T. bakamatsutake, T. fulvocastaneum, and T. caligatum that could have diverged earlier and the other comprising T. magnivelare, Tricholoma sp. Mex, T. anatolicum, and T. matsutake that could have evolved later. In the first group, T. caligatum was the closest to the second group, followed by T. fulvocastaneum and T. bakamatsutake. Within the second group, T. magnivelare was clearly differentiated from the other species. The data suggest that matsutake underwent substantial evolution between the first group, mostly composed of Fagaceae symbionts, and the second group, comprised only of Pinaceae symbionts, but diverged little within each groups. Mobile DNA markers could be useful in resolving difficult phylogenies due to, for example, closely spaced speciation events.


Subject(s)
DNA, Fungal/genetics , Genetic Speciation , Mycorrhizae/genetics , Phylogeny , Retroelements , Tricholoma/genetics , Amino Acid Sequence , DNA Copy Number Variations , DNA, Fungal/classification , Fagaceae/microbiology , Genetic Markers , Molecular Sequence Data , Mycorrhizae/classification , Pinaceae/microbiology , Real-Time Polymerase Chain Reaction , Sequence Alignment , Tricholoma/classification
6.
Proc Natl Acad Sci U S A ; 99(11): 7514-7, 2002 May 28.
Article in English | MEDLINE | ID: mdl-12032314

ABSTRACT

A self-encoding system designed to have strict "compartition" of the molecules, i.e., to contain only a single molecule of DNA in each compartment, was established, and its evolutionary fate was analyzed. The system comprised the Thermus thermophilus DNA polymerase gene as the informational molecule and its protein product replicating the gene as the functional molecule. Imposing strict compartition allows the self-encoding system to last up to at least the tenth generation, whereas the system ceased to work after the third generation when loose compartition initiated with 100 molecules was imposed. These results provide experimental evidence on the importance of compartition for the maintenance of a self-encoding system. In addition, the extent of diversity in self-replication activity of the compartments was found to be another vital difference in the evolutionary dynamics between the strict and loose compartitions. Although the system with strict compartition provides widely diversified activity of the compartments at each generation, the values of the activity diverge only within a small range in the system with loose compartition. When the variety in the activity of a compartment is small, functional selection becomes weak, and to conform Darwinian evolution may become unfeasible. Therefore, strict compartition is essential for the evolvability of a self-encoding system.


Subject(s)
Genetic Code , Thermus thermophilus/genetics , Amino Acid Substitution , DNA Primers , DNA-Directed DNA Polymerase/genetics , Gene Amplification , Genes, Bacterial , Models, Genetic , Molecular Sequence Data , Mutation , Polymerase Chain Reaction/methods , Thermus thermophilus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...