Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 191(6): 927-36, 2000 Mar 20.
Article in English | MEDLINE | ID: mdl-10727455

ABSTRACT

During their final differentiation or maturation, dendritic cells (DCs) redistribute their major histocompatibility complex (MHC) class II products from intracellular compartments to the plasma membrane. Using cells arrested in the immature state, we now find that DCs also regulate the initial intracellular formation of immunogenic MHC class II-peptide complexes. Immature DCs internalize the protein antigen, hen egg lysozyme (HEL), into late endosomes and lysosomes rich in MHC class II molecules. There, despite extensive colocalization of HEL protein and MHC class II products, MHC class II-peptide complexes do not form unless the DCs are exposed to inflammatory mediators such as tumor necrosis factor alpha, CD40 ligand, or lipoplolysaccharide. The control of T cell receptor (TCR) ligand formation was observed using the C4H3 monoclonal antibody to detect MHC class II-HEL peptide complexes by flow cytometry and confocal microscopy, and with HEL-specific 3A9 transgenic T cells to detect downregulation of the TCR upon MHC-peptide encounter. Even the binding of preprocessed HEL peptide to MHC class II is blocked in immature DCs, including the formation of C4H3 epitope in MHC class II compartments, suggesting an arrest to antigen presentation at the peptide-loading step, rather than an enhanced degradation of MHC class II-peptide complexes at the cell surface, as described in previous work. Therefore, the capacity of late endosomes and lysosomes to produce MHC class II-peptide complexes can be strictly controlled during DC differentiation, helping to coordinate antigen acquisition and inflammatory stimuli with formation of TCR ligands. The increased ability of maturing DCs to load MHC class II molecules with antigenic cargo contributes to the >100-fold enhancement of the subsequent primary immune response observed when immature and mature DCs are compared as immune adjuvants in culture and in mice.


Subject(s)
Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Lysosomes/immunology , Peptides/immunology , Animals , Antigen Presentation/immunology , CD40 Antigens/metabolism , CD40 Ligand , Cell Differentiation/immunology , Dendritic Cells/cytology , Dendritic Cells/metabolism , Dendritic Cells/transplantation , Female , Histocompatibility Antigens Class II/metabolism , Inflammation/immunology , Injections, Subcutaneous , Ligands , Lysosomes/metabolism , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C3H , Mice, Inbred CBA , Muramidase/administration & dosage , Muramidase/immunology , Peptides/metabolism
2.
J Exp Med ; 188(11): 2163-73, 1998 Dec 07.
Article in English | MEDLINE | ID: mdl-9841929

ABSTRACT

Cells from the bone marrow can present peptides that are derived from tumors, transplants, and self-tissues. Here we describe how dendritic cells (DCs) process phagocytosed cell fragments onto major histocompatibility complex (MHC) class II products with unusual efficacy. This was monitored with the Y-Ae monoclonal antibody that is specific for complexes of I-Ab MHC class II presenting a peptide derived from I-Ealpha. When immature DCs from I-Ab mice were cultured for 5-20 h with activated I-E+ B blasts, either necrotic or apoptotic, the DCs produced the epitope recognized by the Y-Ae monoclonal antibody and stimulated T cells reactive with the same MHC-peptide complex. Antigen transfer was also observed with human cells, where human histocompatibility leukocyte antigen (HLA)-DRalpha includes the same peptide sequence as mouse I-Ealpha. Antigen transfer was preceded by uptake of B cell fragments into MHC class II-rich compartments. Quantitation of the amount of I-E protein in the B cell fragments revealed that phagocytosed I-E was 1-10 thousand times more efficient in generating MHC-peptide complexes than preprocessed I-E peptide. When we injected different I-E- bearing cells into C57BL/6 mice to look for a similar phenomenon in vivo, we found that short-lived migrating DCs could be processed by most of the recipient DCs in the lymph node. The consequence of antigen transfer from migratory DCs to lymph node DCs is not yet known, but we suggest that in the steady state, i.e., in the absence of stimuli for DC maturation, this transfer leads to peripheral tolerance of the T cell repertoire to self.


Subject(s)
Antigen Presentation , Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Phagocytosis/immunology , Animals , Dendritic Cells/cytology , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...