Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Virol ; 160: 105377, 2023 03.
Article in English | MEDLINE | ID: mdl-36682339

ABSTRACT

BACKGROUND: Since the first isolation of rubella virus (RuV) in 1962, comprehensive data regarding the quantitative evaluation of RuV shedding remain unavailable. In this study, we evaluated the shedding of viral RNA and infectious virus in patients with acute RuV infection. STUDY DESIGN: We analyzed 767 specimens, including serum/plasma, peripheral blood mononuclear cells (PBMCs), throat swabs, and urine, obtained from 251 patients with rubella. The viral RNA load and the presence of infectious RuV were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and virus isolation. RESULTS: Virus excretion peaked 0-2 days after rash onset and decreased over time. The median viral RNA load dropped to an undetectable level on day 3 after rash onset in serum/plasma, day 2 in PBMCs, days 10-13 in throat swabs, and days 6-7 in urine. Infectious virus could be isolated for up to day 2 after rash onset in serum/plasma, day 1 in PBMCs, days 8-9 in throat swabs, and days 4-5 in urine. The minimum viral RNA load that allowed virus isolation was 961 copies/mL in serum/plasma, 784 copies/mL in PBMCs, 650 copies/mL in throat swabs, and 304 copies/mL in urine. A higher viral RNA load indicated a higher likelihood of the presence of infectious virus. CONCLUSION: These findings would contribute to improve algorithms for rubella surveillance and diagnosis. In addition, this study indicates that the results of RT-qPCR enable efficient rubella control by estimating candidate patients excreting infectious virus, which could help prevent viral transmission at an early stage and eliminate rubella ultimately.


Subject(s)
Exanthema , Rubella , Humans , Rubella virus/genetics , RNA, Viral/genetics , Leukocytes, Mononuclear , Rubella/diagnosis , Virus Shedding
2.
J Physiol ; 574(Pt 3): 835-47, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16740614

ABSTRACT

Adenosine is one of the most important neuromodulators in the CNS, both under physiological and pathological conditions. In the isolated spinal cord of the neonatal rat in vitro, acute hypercapnic acidosis (20% CO2, pH 6.7) reversibly depressed electrically evoked spinal reflex potentials. This depression was partially reversed by 8-cyclopentlyl-1,3-dimethylxanthine (CPT), a selective A1 adenosine receptor antagonist. Isohydric hypercapnia (20% CO2, pH 7.3), but not isocapnic acidosis (5% CO2, pH 6.7), depressed the reflex potentials, which were also reversed by CPT. An ecto-5'-nucleotidase inhibitor did not affect the hypercapnic acidosis-evoked depression. An inhibitor of adenosine kinase, but not deaminase, mimicked the inhibitory effect of hypercapnic acidosis on the spinal reflex potentials. Accumulation of extracellular adenosine and inhibition of adenosine kinase activity were caused by hypercapnic acidosis and isohydric hypercapnia, but not isohydric acidosis. These results indicate that the activation of adenosine A1 receptors is involved in the hypercapnia-evoked depression of reflex potentials in the isolated spinal cord of the neonatal rat. The inhibition of adenosine kinase activity is suggested to cause the accumulation of extracellular adenosine during hypercapnia.


Subject(s)
Action Potentials , Adenosine/metabolism , Carbon Dioxide/blood , Hypercapnia/physiopathology , Neural Inhibition , Neurons/metabolism , Spinal Cord/physiopathology , Synaptic Transmission , Animals , Animals, Newborn , Female , Hydrogen-Ion Concentration , In Vitro Techniques , Male , Rats , Rats, Wistar , Spinal Cord/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...