Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 14: 782375, 2021.
Article in English | MEDLINE | ID: mdl-34899185

ABSTRACT

Disease-modifying therapies, such as neuroprotective and neurorestorative interventions, are strongly desired for Alzheimer's disease (AD) treatment. Several studies have suggested that histone deacetylase 2 (HDAC2) inhibition can exhibit disease-modifying effects in AD patients. However, whether HDAC2 inhibition shows neuroprotective and neurorestorative effects under neuropathic conditions, such as amyloid ß (Aß)-elevated states, remains poorly understood. Here, we performed HDAC2-specific knockdown in CA1 pyramidal cells and showed that HDAC2 knockdown increased the length of dendrites and the number of mushroom-like spines of CA1 basal dendrites in APP/PS1 transgenic mouse model. Furthermore, HDAC2 knockdown also ameliorated the deficits in hippocampal CA1 long-term potentiation and memory impairment in contextual fear conditioning tests. Taken together, our results support the notion that specific inhibition of HDAC2 has the potential to slow the disease progression of AD through ameliorating Aß-induced neuronal impairments.

2.
Cell Rep ; 20(6): 1319-1334, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28793257

ABSTRACT

The histone deacetylase HDAC2, which negatively regulates synaptic gene expression and neuronal plasticity, is upregulated in Alzheimer's disease (AD) patients and mouse models. Therapeutics targeting HDAC2 hold promise for ameliorating AD-related cognitive impairment; however, attempts to generate HDAC2-specific inhibitors have failed. Here, we take an integrative genomics approach to identify proteins that mediate HDAC2 recruitment to synaptic plasticity genes. Functional screening revealed that knockdown of the transcription factor Sp3 phenocopied HDAC2 knockdown and that Sp3 facilitated recruitment of HDAC2 to synaptic genes. Importantly, like HDAC2, Sp3 expression was elevated in AD patients and mouse models, where Sp3 knockdown ameliorated synaptic dysfunction. Furthermore, exogenous expression of an HDAC2 fragment containing the Sp3-binding domain restored synaptic plasticity and memory in a mouse model with severe neurodegeneration. Our findings indicate that targeting the HDAC2-Sp3 complex could enhance cognitive function without affecting HDAC2 function in other processes.


Subject(s)
Alzheimer Disease/metabolism , Histone Deacetylase 2/metabolism , Neuronal Plasticity , Neurons/metabolism , Sp3 Transcription Factor/metabolism , Animals , Epigenesis, Genetic , Female , Histone Code , Histones/genetics , Histones/metabolism , Male , Memory , Mice , Neurons/physiology , Sp3 Transcription Factor/genetics
3.
Cell ; 161(7): 1592-605, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26052046

ABSTRACT

Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience-driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next-generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIß (Topo IIß), and knockdown of Topo IIß attenuates both DSB formation and early-response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons.


Subject(s)
DNA Breaks, Double-Stranded , Neurons/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , CCCTC-Binding Factor , DNA Topoisomerases, Type II/analysis , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/analysis , DNA-Binding Proteins/metabolism , Early Growth Response Protein 1/genetics , Etoposide/pharmacology , Gene Expression Regulation , Genes, fos , Genome-Wide Association Study , Mice , Repressor Proteins/metabolism , Transcriptome/drug effects
4.
Bioorg Med Chem ; 21(21): 6506-22, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24051074

ABSTRACT

For further investigation of BACE1 inhibitors using conformational restriction with sp(3) hybridized carbon, we applied this approach to 6-substituted aminopyrimidone derivatives 3 to improve the inhibitory activity by reducing the entropic energy loss upon binding to BACE1. Among eight stereoisomers synthesized, [trans-(1'R,2'R),6S] isomer 6 exhibited the best BACE1 inhibitory activity, which was statistically superior to that of the corresponding ethylene linker compound (R)-3. Combinational examinations of the binding mode of 6 were performed, which included isothermal titration calorimetry (ITC), X-ray crystallographic structure analysis and theoretical calculations, to clarify the effect of our conformational restriction approach. From the ITC measurement, the binding entropy of 6 was found to be ∼0.5kcal larger than that of (R)-3, which is considered to be affected by conformational restriction with a cyclopropane ring.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Models, Molecular , Protease Inhibitors/chemistry , Amides/chemical synthesis , Amides/chemistry , Amides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Calorimetry , Crystallography, X-Ray , Humans , Molecular Conformation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protein Binding , Protein Structure, Tertiary , Stereoisomerism , Structure-Activity Relationship , Thermodynamics
5.
Bioorg Med Chem Lett ; 23(10): 2912-5, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23562056

ABSTRACT

To improve the efficacy of the conformationally restricted BACE1 inhibitors, structural modifications were investigated using two strategies: (a) modification of the terminal aromatic ring and (b) insertion of a spacer between the aromatic rings. In the latter approach, another type of inhibitor 17 bearing an ethylene spacer between two aromatic rings was found to exhibit good BACE1 inhibitory activity, while the corresponding conformationally unrestricted compound 25 showed no activity. This result revealed an interesting effect of a conformational restriction with a cyclopropane ring.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Cyclopropanes/chemistry , Cytosine/analogs & derivatives , Enzyme Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Crystallography, X-Ray , Cytosine/chemical synthesis , Cytosine/chemistry , Cytosine/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Conformation , Structure-Activity Relationship
6.
J Med Chem ; 55(20): 8838-58, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-22998419

ABSTRACT

Improvement of a drug's binding activity using the conformational restriction approach with sp³ hybridized carbon is becoming a key strategy in drug discovery. We applied this approach to BACE1 inhibitors and designed four stereoisomeric cyclopropane compounds in which the ethylene linker of a known amidine-type inhibitor 2 was replaced with chiral cyclopropane rings. The synthesis and biologic evaluation of these compounds revealed that the cis-(1S,2R) isomer 6 exhibited the most potent BACE1 inhibitory activity among them. X-ray structure analysis of the complex of 6 and BACE1 revealed that its unique binding mode is due to the apparent CH-π interaction between the rigid cyclopropane ring and the Tyr71 side chain. A derivatization study using 6 as a lead molecule led to the development of highly potent inhibitors in which the structure-activity relationship as well as the binding mode of the compounds clearly differ from those of known amidine-type inhibitors.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Cyclopropanes/chemical synthesis , Molecular Docking Simulation , Pyrimidines/chemical synthesis , Crystallography, X-Ray , Cyclopropanes/chemistry , Entropy , Enzyme-Linked Immunosorbent Assay , Fluorescence , Humans , Molecular Conformation , Protein Binding , Pyrimidines/chemistry , Stereoisomerism , Structure-Activity Relationship
7.
J Biol Chem ; 285(3): 1634-42, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19926793

ABSTRACT

The amyloid-beta (Abeta) peptide, widely known as the causative molecule of Alzheimer disease (AD), is generated by the sequential cleavage of amyloid precursor protein (APP) by the aspartyl proteases BACE1/beta-secretase and presenilin/gamma-secretase. Inhibition of BACE1, therefore, is a promising strategy for preventing the progression of AD. However, beta-secretase inhibitors (BSIs) exhibit unexpectedly low potency in cells expressing "Swedish mutant" APP (APPswe) and in the transgenic mouse Tg2576, an AD model overexpressing APPswe. The Swedish mutation dramatically accelerates beta-cleavage of APP and hence the generation of Abeta; this acceleration has been assumed to underlie the poor inhibitory activity of BSI against APPswe processing. Here, we studied the mechanism by which the Swedish mutation causes this BSI potency decrease. Surprisingly, decreased BSI potency was not observed in an in vitro assay using purified BACE1 and substrates, indicating that the accelerated beta-cleavage resulting from the Swedish mutation is not its underlying cause. By focusing on differences between the cell-based and in vitro assays, we have demonstrated here that the potency decrease is caused by the aberrant subcellular localization of APPswe processing and not by accelerated beta-cleavage or the accumulation of the C-terminal fragment of beta-cleaved APP. Because most patients with sporadic AD express wild type APP, our findings suggest that the wild type mouse is superior to the Tg2576 mouse as a model for determining the effective dose of BSI for AD patients. This work provides novel insights into the potency decrease of BSI and valuable suggestions for its development as a disease-modifying agent.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mutation , Protease Inhibitors/pharmacology , Amino Acid Sequence , Amyloid Precursor Protein Secretases/isolation & purification , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/chemistry , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/isolation & purification , Aspartic Acid Endopeptidases/metabolism , Cattle , Cell Line, Tumor , Cell Membrane/metabolism , Cell-Free System/metabolism , Humans , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/metabolism
8.
PLoS One ; 4(1): e4199, 2009.
Article in English | MEDLINE | ID: mdl-19142223

ABSTRACT

DTNBP1 has been recognized as a schizophrenia susceptible gene, and its protein product, dysbindin-1, is down-regulated in the brains of schizophrenic patients. However, little is known about the physiological role of dysbindin-1 in the central nervous system. We hypothesized that disruption of dysbindin-1 with unidentified proteins could contribute to pathogenesis and the symptoms of schizophrenia. GST pull-down from human neuroblastoma lysates showed an association of dysbindin-1 with the DNA-dependent protein kinase (DNA-PK) complex. The DNA-PK complex interacts only with splice isoforms A and B, but not with C. We found that isoforms A and B localized in nucleus, where the kinase complex exist, whereas the isoform C was found exclusively in cytosol. Furthermore, results of phosphorylation assay suggest that the DNA-PK complex phosphorylated dysbindin-1 isoforms A and B in cells. These observations suggest that DNA-PK regulates the dysbindin-1 isoforms A and B by phosphorylation in nucleus. Isoform C does not contain exons from 1 to 6. Since schizophrenia-related single nucleotide polymorphisms (SNPs) occur in these introns between exon 1 and exon 6, we suggest that these SNPs might affect splicing of DTNBP1, which leads to impairment of the functional interaction between dysbindin-1 and DNA-PK in schizophrenic patients.


Subject(s)
Carrier Proteins/metabolism , DNA-Activated Protein Kinase/metabolism , Schizophrenia/etiology , Carrier Proteins/genetics , Carrier Proteins/physiology , Cell Nucleus , Central Nervous System , Dysbindin , Dystrophin-Associated Proteins , Humans , Phosphorylation , Polymorphism, Single Nucleotide , Protein Isoforms/metabolism
9.
Biochem Biophys Res Commun ; 355(1): 41-6, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17292328

ABSTRACT

Recently, neuroligins (NLs)3 and 4X have received much attention as autism-related genes. Here, we identified syntrophin-gamma2 (SNTG2) as a de novo binding partner of NL3. SNTG2 also bound to NL4X and NL4Y. Interestingly, the binding was influenced by autism-related mutations, implying that the impaired interaction between NLs and SNTG2 contributes to the etiology of autism.


Subject(s)
Autistic Disorder/genetics , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Mutation , Nerve Tissue Proteins/metabolism , Autistic Disorder/pathology , Carrier Proteins/genetics , Cell Adhesion Molecules, Neuronal , Cloning, Molecular , Humans , Membrane Proteins/genetics , Muscle Proteins/genetics , Nerve Tissue Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/metabolism , Restriction Mapping , Saccharomyces cerevisiae/genetics , Synapses/pathology , gamma-Aminobutyric Acid/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...