Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13697, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37607965

ABSTRACT

The unidirectional carbon fiber reinforced polymer (UD-CFRP) lacks the modulus of elasticity and strength in the lateral direction. This study investigates whether matrix resin with CFRP waste, recycled carbon fiber (rCF), can improve the lateral properties of CFRP. In total, twelve CFRP strips specimen were prefabricated of unidirectional carbon fiber (CF) sheet by hand lay-up (HLU) method and were tested by tensile test and X-ray computed tomography (X-ray CT). Factors such as fiber direction and void distribution significantly affecting its mechanical properties are assessed by X-ray CT inspection. It can be seen that rCF is mixed in a random direction at the position filled with matrix resin without rCF. However, a similar frequency of unimpregnation and voids can be observed in both specimens. Test results showed that experimental values of CFRP laminates with rCF-mixed matrix resin increased compared to the CFRP laminates without rCF. The percentage increase in the lateral tensile strength and modulus of elasticity of the rCFRP compared to the control specimen without rCF is 27.36% and 10.62%, respectively. This study proved that rCF can increase the lateral properties of unidirectional CFRP and shows the effective use of rCF for strengthening material in construction applications.

2.
Materials (Basel) ; 13(19)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019783

ABSTRACT

In this study, the exothermic temperature performance of various Al/Ni multilayer powders with particle sizes ranging from under 75 to over 850 µm, which generate enormous heat during self-propagating exothermic reactions, was determined using a high-speed sampling pyrometer. The Al/Ni multilayer powders were prepared by a cold-rolling and pulverizing method. The multilayer constitution of the Al/Ni multilayer powders was examined by observing the cross-section of the powders using scanning electron microscopy; the results indicate that the powders had similar lamellar structures regardless of the particle size. Exothermic reactions were carried out to measure the temperature changes during the experiment using a pyrometer. We found that the maximum temperature and the duration of the exothermic reaction increased with an increase in the particle size caused by the heat dissipation of the surface area of the Al/Ni multilayer powder. This indicates that the thermal characteristics of the exothermic reaction of the Al/Ni multilayer powder can be controlled by adjusting the particle size of the Al/Ni multilayer powder. Finally, we concluded that this controllability of the exothermic phenomenon can be applied as a local heating source in a wide range of fields.

SELECTION OF CITATIONS
SEARCH DETAIL