Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Plant Cell Physiol ; 64(12): 1436-1448, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37948767

ABSTRACT

Tetrahydrofuran ring formation from dibenzylbutyrolactone lignans is a key step in the biosynthesis of aryltetralin lignans including deoxypodophyllotoxin and podophyllotoxin. Previously, Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2-ODD) from Podophyllum hexandrum (Himalayan mayapple, Berberidaceae) was found to catalyze the cyclization of a dibenzylbutyrolactone lignan, yatein, to give deoxypodophyllotoxin and designated as deoxypodophyllotoxin synthase (DPS). Recently, we reported that the biosynthesis of deoxypodophyllotoxin and podophyllotoxin evolved in a lineage-specific manner in phylogenetically unrelated plant species such as P. hexandrum and Anthriscus sylvestris (cow parsley, Apiaceae). Therefore, a comprehensive understanding of the characteristics of DPSs that catalyze the cyclization of yatein to deoxypodophyllotoxin in various plant species is important. However, for plant species other than P. hexandrum, the isolation of the DPS enzyme gene and the type of the enzyme, e.g. whether it is 2-ODD or another type of enzyme such as cytochrome P-450, have not been reported. In this study, we report the identification and characterization of A. sylvestris DPS (AsDPS). Phylogenetic analysis showed that AsDPS belonged to the 2-ODD superfamily and shared moderate amino acid sequence identity (40.8%) with P. hexandrum deoxypodophyllotoxin synthase (PhDPS). Recombinant protein assay indicated that AsDPS and PhDPS differ in terms of the selectivity of substrate enantiomers. Protein modeling using AlphaFold2 and site-directed mutagenesis indicated that the Tyr305 residue of AsDPS probably contributes to substrate recognition. This study advances our understanding of the podophyllotoxin biosynthetic pathway in A. sylvestris and provides new insight into 2-ODD involved in plant secondary (specialized) metabolism.


Subject(s)
Apiaceae , Lignans , Podophyllotoxin/chemistry , Phylogeny , Lignans/metabolism , Apiaceae/chemistry , Apiaceae/metabolism
2.
Plant Cell Physiol ; 64(1): 124-147, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36412832

ABSTRACT

O-Methyltransferases (OMTs) play important roles in antitumor lignan biosynthesis. To date, six OMTs catalyzing the methylation of dibenzylbutyrolactone lignans as biosynthetic precursors of antitumor lignans have been identified. However, there is still no systematic understanding of the diversity and regularity of the biosynthetic mechanisms among various plant lineages. Herein, we report the characterization of two OMTs from Anthriscus sylvestris and Thujopsis dolabrata var. hondae [designated as AsSecoNorYatein (SNY) OMT and TdSNYOMT] together with the six known OMTs to evaluate their diversity and regularity. Although A. sylvestris 5-O-methylthujaplicatin (SecoNorYatein) and 4-O-demethylyatein (NorYatein) OMT (AsSNYOMT) and TdSNYOMT accept 5-O-methylthujaplicatin and 4-O-demethylyatein as substrates, phylogenetic analysis indicated that these two OMTs shared low amino acid sequence identity, 33.8%, indicating a signature of parallel evolution. The OMTs and the six previously identified OMTs were found to be diverse in terms of their substrate specificity, regioselectivity and amino acid sequence identity, indicating independent evolution in each plant species. Meanwhile, two-entropy analysis detected four amino acid residues as being specifically acquired by dibenzylbutyrolactone lignan OMTs. Site-directed mutation of AsSNYOMT indicated that two of them contributed specifically to 5-O-methylthujaplicatin methylation. The results provide a new example of parallel evolution and the diversity and regularity of OMTs in plant secondary (specialized) metabolism.


Subject(s)
Lignans , Methyltransferases , Animals , Cattle , Methyltransferases/metabolism , Petroselinum/metabolism , Phylogeny , Methylation , Substrate Specificity
3.
Plant Physiol ; 191(1): 70-86, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36124989

ABSTRACT

Bioengineering approaches to modify lignin content and structure in plant cell walls have shown promise for facilitating biochemical conversions of lignocellulosic biomass into valuable chemicals. Despite numerous research efforts, however, the effect of altered lignin chemistry on the supramolecular assembly of lignocellulose and consequently its deconstruction in lignin-modified transgenic and mutant plants is not fully understood. In this study, we aimed to close this gap by analyzing lignin-modified rice (Oryza sativa L.) mutants deficient in 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (CAldOMT) and CINNAMYL ALCOHOL DEHYDROGENASE (CAD). A set of rice mutants harboring knockout mutations in either or both OsCAldOMT1 and OsCAD2 was generated in part by genome editing and subjected to comparative cell wall chemical and supramolecular structure analyses. In line with the proposed functions of CAldOMT and CAD in grass lignin biosynthesis, OsCAldOMT1-deficient mutant lines produced altered lignins depleted of syringyl and tricin units and incorporating noncanonical 5-hydroxyguaiacyl units, whereas OsCAD2-deficient mutant lines produced lignins incorporating noncanonical hydroxycinnamaldehyde-derived units. All tested OsCAldOMT1- and OsCAD2-deficient mutants, especially OsCAldOMT1-deficient lines, displayed enhanced cell wall saccharification efficiency. Solid-state nuclear magnetic resonance (NMR) and X-ray diffraction analyses of rice cell walls revealed that both OsCAldOMT1- and OsCAD2 deficiencies contributed to the disruptions of the cellulose crystalline network. Further, OsCAldOMT1 deficiency contributed to the increase of the cellulose molecular mobility more prominently than OsCAD2 deficiency, resulting in apparently more loosened lignocellulose molecular assembly. Such alterations in cell wall chemical and supramolecular structures may in part account for the variations of saccharification performance of the OsCAldOMT1- and OsCAD2-deficient rice mutants.


Subject(s)
Lignin , Oryza , Lignin/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Mutation/genetics , Cell Wall/metabolism
4.
Plant Cell ; 33(1): 129-152, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33751095

ABSTRACT

Lignans/neolignans are generally synthesized from coniferyl alcohol (CA) in the cinnamate/monolignol pathway by oxidation to generate the corresponding radicals with subsequent stereoselective dimerization aided by dirigent proteins (DIRs). Genes encoding oxidases and DIRs for neolignan biosynthesis have not been identified previously. In Arabidopsis thaliana, the DIR AtDP1/AtDIR12 plays an essential role in the 8-O-4' coupling in neolignan biosynthesis by unequivocal structural determination of the compound missing in the atdp1 mutant as a sinapoylcholine (SC)-conjugated neolignan, erythro-3-{4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-hydroxymethylethoxy]-3,5-dimethoxyphenyl}acryloylcholine. Phylogenetic analyses showed that AtDP1/AtDIR12 belongs to the DIR-a subfamily composed of DIRs for 8-8' coupling of monolignol radicals. AtDP1/AtDIR12 is specifically expressed in outer integument 1 cells in developing seeds. As a putative oxidase for neolignan biosynthesis, we focused on AtLAC5, a laccase gene coexpressed with AtDP1/AtDIR12. In lac5 mutants, the abundance of feruloylcholine (FC)-conjugated neolignans decreased to a level comparable to those in the atdp1 mutant. In addition, SC/FC-conjugated neolignans were missing in the seeds of mutants defective in SCT/SCPL19, an enzyme that synthesizes SC. These results strongly suggest that AtDP1/AtDIR12 and AtLAC5 are involved in neolignan biosynthesis via SC/FC. A tetrazolium penetration assay showed that seed coat permeability increased in atdp1 mutants, suggesting a protective role of neolignans in A. thaliana seeds.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Lignans/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Oxidoreductases/genetics , Oxidoreductases/metabolism
5.
Plant Sci ; 296: 110466, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32539998

ABSTRACT

Breeding to enrich lignin, a major component of lignocelluloses, in plants contributes to enhanced applications of lignocellulosic biomass into solid biofuels and valuable aromatic chemicals. To collect information on enhancing lignin deposition in grass species, important lignocellulose feedstocks, we generated rice (Oryza sativa) transgenic lines deficient in OsWRKY36 and OsWRKY102, which encode putative transcriptional repressors for secondary cell wall formation. We used CRISPR/Cas9-mediated targeted mutagenesis and closely characterized their altered cell walls using chemical and nuclear magnetic resonance (NMR) methods. Both OsWRKY36 and OsWRKY102 mutations significantly increased lignin content by up to 28 % and 32 %, respectively. Additionally, OsWRKY36/OsWRKY102-double-mutant lines displayed lignin enrichment of cell walls (by up to 41 %) with substantially altered culm morphology over the single-mutant lines as well as the wild-type controls. Our chemical and NMR analyses showed that relative abundances of guaiacyl and p-coumarate units were slightly higher and lower, respectively, in the WRKY mutant lignins compared with those in the wild-type lignins. Our results provide evidence that both OsWRKY36 and OsWRKY102 are associated with repression of rice lignification.


Subject(s)
Lignin/metabolism , Oryza/anatomy & histology , Plant Proteins/physiology , Plant Stems/anatomy & histology , Transcription Factors/physiology , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cell Wall/metabolism , Gene Editing , Gene Knockout Techniques , Magnetic Resonance Spectroscopy , Oryza/genetics , Oryza/metabolism , Phylogeny , Plant Proteins/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Plants, Genetically Modified , Transcription Factors/metabolism
6.
Molecules ; 25(5)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150921

ABSTRACT

A large-scale glycol lignin (GL) production process (50 kg wood meal per batch) based on acid-catalyzed polyethylene glycol (PEG) solvolysis of Japanese cedar (JC) was developed at the Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Japan. JC wood meal with various particle size distributions (JC-S < JC-M < JC-L) (average meal size, JC-S (0.4 mm) < JC-M (0.8 mm) < JC-L (1.6 mm)) and liquid PEG with various molecular masses are used as starting materials to produce PEG-modified lignin derivatives, namely, GLs, with various physicochemical and thermal properties. Because GLs are considered a potential feedstock for industrial applications, the effect of heat treatment on GL properties is an important issue for GL-based material production. In this study, GLs obtained from PEG400 solvolysis of JC-S, JC-M, and JC-L were subjected to heating in a constant-temperature drying oven at temperatures ranging from 100 to 220 °C for 1 h. All heat-treated GL series were thermally stable, as determined from the Klason lignin content, TMA, and TGA analyses. SEC analysis suggests the possibility of condensation among lignin fragments during heat treatment. ATR-FTIR spectroscopy, thioacidolysis, and 2D HSQC NMR demonstrated that a structural rearrangement occurs in the heat-treated GL400 samples, in which the content of α-PEG-ß-O-4 linkages decreases along with the proportional enrichments of ß-5 and ß-ß linkages, particularly at treatment temperatures above 160 °C.


Subject(s)
Hot Temperature , Lignin/chemistry , Molecular Structure , Wood/chemistry , Lignin/analysis , Magnetic Resonance Spectroscopy/methods , Molecular Weight , Spectroscopy, Fourier Transform Infrared
7.
Sci Rep ; 9(1): 17153, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748605

ABSTRACT

Lignin is a complex phenylpropanoid polymer deposited in plant cell walls. Lignin has long been recognized as an important limiting factor for the polysaccharide-oriented biomass utilizations. To mitigate lignin-associated biomass recalcitrance, numerous mutants and transgenic plants that produce lignocellulose with reduced lignin contents and/or lignins with altered chemical structures have been produced and characterised. However, it is not fully understood how altered lignin chemistry affects the supramolecular structure of lignocellulose, and consequently, its utilization properties. Herein, we conducted comprehensive chemical and supramolecular structural analyses of lignocellulose produced by a rice cad2 mutant deficient in CINNAMYL ALCOHOL DEHYDROGENASE (CAD), which encodes a key enzyme in lignin biosynthesis. By using a solution-state two-dimensional NMR approach and complementary chemical methods, we elucidated the structural details of the altered lignins enriched with unusual hydroxycinnamaldehyde-derived substructures produced by the cad2 mutant. In parallel, polysaccharide assembly and the molecular mobility of lignocellulose were investigated by solid-state 13C MAS NMR, nuclear magnetic relaxation, X-ray diffraction, and Simon's staining analyses. Possible links between CAD-associated lignin modifications (in terms of total content and chemical structures) and changes to the lignocellulose supramolecular structure are discussed in the context of the improved biomass saccharification efficiency of the cad2 rice mutant.


Subject(s)
Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Lignin/chemistry , Lignin/metabolism , Oryza/chemistry , Oryza/metabolism , Plant Proteins/chemistry , Biomass , Cell Wall/chemistry , Cell Wall/metabolism , Cinnamates/chemistry , Cinnamates/metabolism , Molecular Structure , Mutation/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism
8.
Plant Biotechnol (Tokyo) ; 36(2): 113-118, 2019.
Article in English | MEDLINE | ID: mdl-31768112

ABSTRACT

Podophyllotoxin is a starting material of the semisynthetic anticancer medicines etoposide, teniposide, and etopophos. The major plant source of podophyllotoxin is rhizomes of Podophyllum hexandrum, which is a Himalayan endangered species; therefore, alternative sources of podophyllotoxin or bioproduction systems have been pursued to avoid exploiting this limited natural resource. In this paper, we report de novo transcriptome analysis of Thujopsis dolablata var. hondae, which accumulates the podophyllotoxin derivatives (deoxypodophyllotoxin and ß-peltatin A methyl ether) in its needles. We analyzed transcriptomes of the T. dolablata var. hondae young needles to obtain the sequences that putatively encode O-methyltransferases, cytochrome P450s, and a 2-oxoglutarate dependent dioxygenase because these protein families are responsible for podophyllotoxin-related compound formation in P. hexandrum. The resulting transcriptomes contained considerable numbers of coding sequences classified into the three protein families. Our results are a genetic basis for identifying genes involved in the biosynthesis of podophyllotoxin and related compounds and also for future metabolic engineering of podophyllotoxin in heterologous hosts.

9.
Sci Rep ; 9(1): 11597, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406182

ABSTRACT

Lignin is a phenylpropanoid polymer produced in the secondary cell walls of vascular plants. Although most eudicot and gymnosperm species generate lignins solely via polymerization of p-hydroxycinnamyl alcohols (monolignols), grasses additionally use a flavone, tricin, as a natural lignin monomer to generate tricin-incorporated lignin polymers in cell walls. We previously found that disruption of a rice 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (OsCAldOMT1) reduced extractable tricin-type metabolites in rice vegetative tissues. This same enzyme has also been implicated in the biosynthesis of sinapyl alcohol, a monolignol that constitutes syringyl lignin polymer units. Here, we further demonstrate through in-depth cell wall structural analyses that OsCAldOMT1-deficient rice plants produce altered lignins largely depleted in both syringyl and tricin units. We also show that recombinant OsCAldOMT1 displayed comparable substrate specificities towards both 5-hydroxyconiferaldehyde and selgin intermediates in the monolignol and tricin biosynthetic pathways, respectively. These data establish OsCAldOMT1 as a bifunctional O-methyltransferase predominantly involved in the two parallel metabolic pathways both dedicated to the biosynthesis of tricin-lignins in rice cell walls. Given that cell wall digestibility was greatly enhanced in the OsCAldOMT1-deficient rice plants, genetic manipulation of CAldOMTs conserved in grasses may serve as a potent strategy to improve biorefinery applications of grass biomass.


Subject(s)
Cell Wall/metabolism , Flavonoids/biosynthesis , Lignin/biosynthesis , Methyltransferases/metabolism , Oryza/metabolism , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
10.
New Phytol ; 223(1): 204-219, 2019 07.
Article in English | MEDLINE | ID: mdl-30883799

ABSTRACT

In rice (Oryza sativa), OsF2H and OsFNSII direct flavanones to independent pathways that form soluble flavone C-glycosides and tricin-type metabolites (both soluble and lignin-bound), respectively. Production of soluble tricin metabolites requires CYP75B4 as a chrysoeriol 5'-hydroxylase. Meanwhile, the close homologue CYP75B3 is a canonical flavonoid 3'-hydroxylase (F3'H). However, their precise roles in the biosynthesis of soluble flavone C-glycosides and tricin-lignins in cell walls remain unknown. We examined CYP75B3 and CYP75B4 expression in vegetative tissues, analyzed extractable flavonoid profiles, cell wall structure and digestibility of their mutants, and investigated catalytic activities of CYP75B4 orthologues in grasses. CYP75B3 and CYP75B4 showed co-expression patterns with OsF2H and OsFNSII, respectively. CYP75B3 is the sole F3'H in flavone C-glycosides biosynthesis, whereas CYP75B4 alone provides sufficient 3',5'-hydroxylation for tricin-lignin deposition. CYP75B4 mutation results in production of apigenin-incorporated lignin and enhancement of cell wall digestibility. Moreover, tricin pathway-specific 3',5'-hydroxylation activities are conserved in sorghum CYP75B97 and switchgrass CYP75B11. CYP75B3 and CYP75B4 represent two different pathway-specific enzymes recruited together with OsF2H and OsFNSII, respectively. Interestingly, the OsF2H-CYP75B3 and OsFNSII-CYP75B4 pairs appear to be conserved in grasses. Finally, manipulation of tricin biosynthesis through CYP75B4 orthologues can be a promising strategy to improve digestibility of grass biomass for biofuel and biomaterial production.


Subject(s)
Biosynthetic Pathways , Flavones/metabolism , Flavonoids/metabolism , Metabolome , Mixed Function Oxygenases/metabolism , Poaceae/metabolism , Carbohydrate Metabolism , Cell Wall/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Flavones/chemistry , Flavonoids/chemistry , Gene Expression Regulation, Plant , Glycosides/metabolism , Lignin/metabolism , Magnetic Resonance Spectroscopy , Mutation/genetics , Oryza/metabolism , Panicum/metabolism , Solubility , Sorghum/metabolism
11.
Plant J ; 98(6): 975-987, 2019 06.
Article in English | MEDLINE | ID: mdl-30773774

ABSTRACT

Breeding approaches to enrich lignins in biomass could be beneficial to improving the biorefinery process because lignins increase biomass heating value and represent a potent source of valuable aromatic chemicals. However, despite the fact that grasses are promising lignocellulose feedstocks, limited information is yet available for molecular-breeding approaches to upregulate lignin biosynthesis in grass species. In this study, we generated lignin-enriched transgenic rice (Oryza sativa), a model grass species, via targeted mutagenesis of the transcriptional repressor OsMYB108 using CRISPR/Cas9-mediated genome editing. The OsMYB108-knockout rice mutants displayed increased expressions of lignin biosynthetic genes and enhanced lignin deposition in culm cell walls. Chemical and two-dimensional nuclear magnetic resonance (NMR) analyses revealed that the mutant cell walls were preferentially enriched in γ-p-coumaroylated and tricin lignin units, both of which are typical and unique components in grass lignins. NMR analysis also showed that the relative abundances of major lignin linkage types were altered in the OsMYB108 mutants.


Subject(s)
Flavonoids/metabolism , Gene Expression Regulation, Plant , Lignin/metabolism , Oryza/genetics , Propionates/metabolism , Transcription Factors/metabolism , Biomass , CRISPR-Cas Systems , Cell Wall/chemistry , Cell Wall/metabolism , Coumaric Acids , Gene Editing , Gene Regulatory Networks , Lignin/chemistry , Loss of Function Mutation , Oryza/chemistry , Oryza/growth & development , Oryza/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Transcription Factors/genetics , Up-Regulation
12.
Plant J ; 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-29890017

ABSTRACT

p-Coumaroyl ester 3-hydroxylase (C3'H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3'H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3'H deficiency on the structure and properties of grass cell walls. C3'H-knockdown lines generated via RNA interference (RNAi)-mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3'H-knockout rice mutants generated via CRISPR/Cas9-mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3'H-knockdown RNAi lines revealed that their lignins were largely enriched in p-hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non-acylated lignin units, with grass-specific γ-p-coumaroylated lignin units remaining apparently unchanged. Suppression of C3'H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross-linking ferulates. Collectively, our data demonstrate that C3'H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross-linking. We also demonstrated that C3'H-suppressed rice displays enhanced biomass saccharification.

13.
Biosci Biotechnol Biochem ; 82(7): 1143-1152, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29558856

ABSTRACT

A comprehensive understanding of the structure and properties of gramineous lignocelluloses is needed to facilitate their uses in biorefinery. In this study, lignocelluloses from fractionated internode tissues of two taxonomically close species, Erianthus arundinaceus and sugarcane (Saccharum spp.), were characterized. Our analyses determined that syringyl (S) lignins were predominant over guaiacyl (G) or p-hydroxyphenyl (H) lignins in sugarcane tissues; on the other hand, S lignin levels were similar to those of G lignin in Erianthus tissues. In addition, tricin units were detected in sugarcane tissues, but not in Erianthus tissues. Distributions of lignin inter-monomeric linkage types were also different in Erianthus and sugarcane tissues. Alkaline treatment removed lignins from sugarcane tissues more efficiently than Erianthus tissues, resulting in a higher enzymatic digestibility of sugarcane tissues compared with Erianthus tissues. Our data indicate that Erianthus biomass displayed resistance to alkaline delignification and enzymatic digestion.


Subject(s)
Alkalies/chemistry , Biomass , Enzymes/metabolism , Lignin/chemistry , Polysaccharides/metabolism , Saccharum/chemistry , Saccharum/classification , Saccharum/enzymology , Species Specificity
14.
Sci Rep ; 8(1): 1290, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358744

ABSTRACT

Termites represent one of the most efficient lignocellulose decomposers on earth. The mechanism by which termites overcome the recalcitrant lignin barrier to gain access to embedded polysaccharides for assimilation and energy remains largely unknown. In the present study, softwood, hardwood, and grass lignocellulose diets were fed to Coptotermes formosanus workers, and structural differences between the original lignocellulose diets and the resulting feces were examined by solution-state multidimensional nuclear magnetic resonance (NMR) techniques as well as by complementary wet-chemical methods. Overall, our data support the view that lignin polymers are partially decomposed during their passage through the termite gut digestive system, although polysaccharide decomposition clearly dominates the overall lignocellulose deconstruction process and the majority of lignin polymers remain intact in the digestive residues. High-resolution NMR structural data suggested preferential removal of syringyl aromatic units in hardwood lignins, but non-acylated guaiacyl units as well as tricin end-units in grass lignins. In addition, our data suggest that termites and/or their gut symbionts may favor degradation of C-C-bonded ß-5 and resinol-type ß-ß lignin inter-monomeric units over degradation of ether-bonded ß-O-4 units, which is in contrast to what has been observed in typical lignin biodegradation undertaken by wood-decaying fungi.


Subject(s)
Gastrointestinal Tract/metabolism , Isoptera/physiology , Lignin/chemistry , Polysaccharides/chemistry , Wood/metabolism , Animals , Carbohydrate Sequence , Feces/chemistry , Hydrolysis , Japan , Magnetic Resonance Spectroscopy , Molecular Structure , Polysaccharides/classification , Polysaccharides/isolation & purification , Wood/classification
15.
J Insect Physiol ; 103: 57-63, 2017 11.
Article in English | MEDLINE | ID: mdl-29038014

ABSTRACT

We investigated the effects of lignins as diet components on the physiological activities of a lower termite, Coptotermes formosanus Shiraki. Artificial diets composed of polysaccharides with and without purified lignins (milled-wood lignins) from Japanese cedar (softwood), Japanese beech (hardwood), and rice (grass), were fed to C. formosanus workers. The survival and body mass of the workers as well as the presence of three symbiotic protists in the hindguts of the workers were then periodically examined. The survival rates of workers fed on diets containing lignins were, regardless of the lignocellulose diet sources, significantly higher than those of workers fed on only polysaccharides. In addition, it was clearly observed that all the tested lignins have positive effects on the maintenance of two major protists in the hindguts of C. formosanus workers, i.e., Pseudotrichonympha grassii and Holomastigotoides hartmanni. Overall, our data suggest that the presence of lignin is crucial to maintaining the physiological activities of C. formosanus workers during their lignocellulose decomposition. Our data also suggested that some components, possibly minerals and/or non-structural carbohydrates, in grass lignocellulose negatively affect the survival of C. formosanus workers as well as the present rate of the symbiotic protists in their hindguts.


Subject(s)
Isoptera/physiology , Lignin/physiology , Animals , Diet , Parabasalidea/physiology , Symbiosis
16.
Plant Physiol ; 174(2): 972-985, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28385728

ABSTRACT

Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is derived primarily from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was discovered recently that a wide range of grasses, including cereals, utilize a member of the flavonoids, tricin (3',5'-dimethoxyflavone), as a natural comonomer with monolignols for cell wall lignification. Previously, we established that cytochrome P450 93G1 is a flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived metabolites in rice (Oryza sativa). Here, our tricin-deficient fnsII mutant was analyzed further with an emphasis on its cell wall structure and properties. The mutant is similar in growth to wild-type control plants with normal vascular morphology. Chemical and nuclear magnetic resonance structural analyses demonstrated that the mutant lignin is completely devoid of tricin, indicating that FNSII activity is essential for the deposition of tricin-bound lignin in rice cell walls. The mutant also showed substantially reduced lignin content with decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the mutant lignin appears to be partially compensated by incorporating naringenin, which is a preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification.


Subject(s)
Biomass , Lignin/metabolism , Mixed Function Oxygenases/metabolism , Oryza/enzymology , Biosynthetic Pathways/genetics , Cell Wall/metabolism , Fertility/genetics , Gene Expression Regulation, Plant , Gene Knockout Techniques , Genes, Plant , Magnetic Resonance Spectroscopy , Mutation/genetics , Oryza/genetics , Phenotype
17.
Planta ; 246(2): 337-349, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28421330

ABSTRACT

MAIN CONCLUSION: Regulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization. The aromatic composition of lignin greatly affects utilization characteristics of lignocellulosic biomass and, therefore, has been one of the primary targets of cell wall engineering studies. Limited information is, however, available regarding lignin modifications in monocotyledonous grasses, despite the fact that grass lignocelluloses have a great potential for feedstocks of biofuel production and various biorefinery applications. Here, we report that manipulation of a gene encoding coniferaldehyde 5-hydroxylase (CAld5H, or ferulate 5-hydroxylase, F5H) leads to substantial alterations in syringyl (S)/guaiacyl (G) lignin aromatic composition in rice (Oryza sativa), a major model grass and commercially important crop. Among three CAld5H genes identified in rice, OsCAld5H1 (CYP84A5) appeared to be predominantly expressed in lignin-producing rice vegetative tissues. Down-regulation of OsCAld5H1 produced altered lignins largely enriched in G units, whereas up-regulation of OsCAld5H1 resulted in lignins enriched in S units, as revealed by a series of wet-chemical and NMR structural analyses. Our data collectively demonstrate that OsCAld5H1 expression is a major factor controlling S/G lignin composition in rice cell walls. Given that S/G lignin composition affects various biomass properties, we contemplate that manipulation of CAld5H gene expression represents a promising strategy to upgrade grass biomass for biorefinery applications.


Subject(s)
Carboxy-Lyases/metabolism , Lignin/metabolism , Oryza/enzymology , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/metabolism , Biofuels , Biomass , Biosynthetic Pathways , Carboxy-Lyases/genetics , Cell Wall/metabolism , Down-Regulation , Genetic Engineering , Lignin/chemistry , Oryza/cytology , Oryza/genetics , Oryza/growth & development , Phylogeny , Plant Leaves/anatomy & histology , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Up-Regulation
18.
Plant Biotechnol (Tokyo) ; 34(1): 7-15, 2017.
Article in English | MEDLINE | ID: mdl-31275003

ABSTRACT

Lignin encrusts lignocellulose polysaccharides, and has long been considered an obstacle for the efficient use of polysaccharides during processes such as pulping and bioethanol fermentation. However, lignin is also a potential feedstock for aromatic products and is an important by-product of polysaccharide utilization. Therefore, producing biomass plant species exhibiting enhanced lignin production is an important breeding objective. Herein, we describe the development of transgenic rice plants with increased lignin content. Five Arabidopsis thaliana (Arabidopsis) and one Oryza sativa (rice) MYB transcription factor genes that were implicated to be involved in lignin biosynthesis were transformed into rice (O. sativa L. ssp. japonica cv. Nipponbare). Among them, three Arabidopsis MYBs (AtMYB55, AtMYB61, and AtMYB63) in transgenic rice T1 lines resulted in culms with lignin content about 1.5-fold higher than that of control plants. Furthermore, lignin structures in AtMYB61-overexpressing rice plants were investigated by wet-chemistry and two-dimensional nuclear magnetic resonance spectroscopy approaches. Our data suggested that heterologous expression of AtMYB61 in rice increased lignin content mainly by enriching syringyl units as well as p-coumarate and tricin moieties in the lignin polymers. We contemplate that this strategy is also applicable to lignin upregulation in large-sized grass biomass plants, such as Sorghum, switchgrass, Miscanthus and Erianthus.

19.
J Clin Oncol ; 29(4): 428-34, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21149671

ABSTRACT

PURPOSE: The risk of myelodysplastic syndromes (MDS) has not been fully investigated among people exposed to ionizing radiation. We investigate MDS risk and radiation dose-response in Japanese atomic bomb survivors. PATIENTS AND METHODS: We conducted a retrospective cohort study by using two databases of Nagasaki atomic bomb survivors: 64,026 people with known exposure distance in the database of Nagasaki University Atomic-Bomb Disease Institute (ABDI) and 22,245 people with estimated radiation dose in the Radiation Effects Research Foundation Life Span Study (LSS). Patients with MDS diagnosed from 1985 to 2004 were identified by record linkage between the cohorts and the Nagasaki Prefecture Cancer Registry. Cox and Poisson regression models were used to estimate relationships between exposure distance or dose and MDS risk. RESULTS: There were 151 patients with MDS in the ABDI cohort and 47 patients with MDS in the LSS cohort. MDS rate increased inversely with exposure distance, with an excess relative risk (ERR) decay per km of 1.2 (95% CI, 0.4 to 3.0; P < .001) for ABDI. MDS risk also showed a significant linear response to exposure dose level (P < .001) with an ERR per Gy of 4.3 (95% CI, 1.6 to 9.5; P < .001). After adjustment for sex, attained age, and birth year, the MDS risk was significantly greater in those exposed when young. CONCLUSION: A significant linear radiation dose-response for MDS exists in atomic bomb survivors 40 to 60 years after radiation exposure. Clinicians should perform careful long-term follow-up of irradiated people to detect MDS as early as possible.


Subject(s)
Myelodysplastic Syndromes/etiology , Nuclear Weapons , Radiation Injuries/etiology , Survivors/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Databases as Topic , Dose-Response Relationship, Radiation , Female , Humans , Infant , Japan , Linear Models , Male , Middle Aged , Proportional Hazards Models , Registries , Residence Characteristics , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Young Adult
20.
Blood ; 116(8): 1211-9, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20448111

ABSTRACT

Definitive risk factors for the development of adult T-cell leukemia (ATL) among asymptomatic human T-cell leukemia virus type I (HTLV-1) carriers remain unclear. Recently, HTLV-1 proviral loads have been evaluated as important predictors of ATL, but a few small prospective studies have been conducted. We prospectively evaluated 1218 asymptomatic HTLV-1 carriers (426 males and 792 females) who were enrolled during 2002 to 2008. The proviral load at enrollment was significantly higher in males than females (median, 2.10 vs 1.39 copies/100 peripheral blood mononuclear cells [PBMCs]; P < .001), in those 40 to 49 and 50 to 59 years of age than that of those 40 years of age and younger (P = .02 and .007, respectively), and in those with a family history of ATL than those without the history (median, 2.32 vs 1.33 copies/100 PBMCs; P = .005). During follow-up, 14 participants progressed to overt ATL. Their baseline proviral load was high (range, 4.17-28.58 copies/100 PBMCs). None developed ATL among those with a baseline proviral load lower than approximately 4 copies. Multivariate Cox analyses indicated that not only a higher proviral load, advanced age, family history of ATL, and first opportunity for HTLV-1 testing during treatment for other diseases were independent risk factors for progression of ATL.


Subject(s)
HTLV-I Infections/virology , Human T-lymphotropic virus 1/genetics , Leukemia-Lymphoma, Adult T-Cell/epidemiology , Leukemia-Lymphoma, Adult T-Cell/virology , Proviruses/genetics , Viral Load/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Blotting, Southern , Carrier State , Child , DNA, Viral/genetics , Disease Progression , Female , Follow-Up Studies , HTLV-I Infections/blood , HTLV-I Infections/epidemiology , Human T-lymphotropic virus 1/isolation & purification , Humans , Japan/epidemiology , Male , Middle Aged , Prognosis , Prospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...