Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
2.
Soft Matter ; 19(37): 7245-7254, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37724464

ABSTRACT

Recently, two molecular packing modes of the alkyl chain in smectic A (SmA) liquid crystal phases were revealed: normal and tilted types, which are named by the orientation relative to the layer normal. This study reveals the relationship between the packing mode and thermodynamic order of the SmA-nematic (N) phase transition. Two normal type and three tilted type mesogens were subject to thermodynamic and structural experiments. The DSC results showed that the SmA-N phase transitions of the normal and tilted types are of the second and first order, respectively. The analysis of the intensities of reflections in wide-angle X-ray diffraction related to the periodicity of the SmA layer yielded the distribution of the mass centers of molecules along the normal to the SmA layers. The resultant distribution offered a rationale for the correlation of the thermodynamic order of the SmA-N phase transition and molecular packing modes in the SmA phases based on the Meyer-Lubensky theory.

3.
J Phys Chem B ; 127(28): 6296-6305, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37417885

ABSTRACT

Water is considered integral for the stabilization and function of proteins, which has recently attracted significant attention. However, the microscopic aspects of water ranging up to the second hydration shell, including strongly and weakly bound water at the sub-nanometer scale, are not yet well understood. Here, we combined terahertz spectroscopy, thermal measurements, and infrared spectroscopy to clarify how the strongly and weakly bound hydration water changes upon protein denaturation. With denaturation, that is, the exposure of hydrophobic groups in water and entanglement of hydrophilic groups, the number of strongly bound hydration water decreased, while the number of weakly bound hydration water increased. Even though the constraint of water due to hydrophobic hydration is weak, it extends to the second hydration shell as it is caused by the strengthening of hydrogen bonds between water molecules, which is likely the key microscopic mechanism for the destabilization of the native state due to hydration.


Subject(s)
Proteins , Water , Water/chemistry , Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Hydrogen Bonding , Protein Denaturation
4.
Phys Chem Chem Phys ; 25(29): 19891-19898, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37458151

ABSTRACT

Two types of binary mixtures were examined to optimize the siloxanyl fraction by filling the gap between the two Cub-phase-forming molecules with di- and tri-siloxanyl terminals. Adding siloxanyl to the disiloxanyl system largely inhibited crystallization, increasing the stability at room temperature of the meta-stable Ia3̄d phase obtained by cooling from the high-temperature phase. The effect was prominent for the mixtures containing both di- and tri-siloxanyl compounds. The most prominent result was obtained for the 50 : 50 mixture; the Ia3̄d phase was quite stable and survived at room temperature after more than 1 year, as if it were like a thermodynamically stable phase.

5.
Soft Matter ; 19(6): 1194-1201, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36655785

ABSTRACT

Chiral aggregation structure spontaneously formed by achiral rodlike molecules, a long-time unsolved problem in liquid crystal science, has been clarified by applying a new crystallographic algorithm recently developed while utilizing aggregation characteristics of this type. Bicontinuously interwoven networks characterize it similarly to the neighboring Gyroid phase in a phase diagram against the alkyl chain length and temperature. However, the network connectivity is significantly different from the bicontinuous networks that have been either known for related compounds or assumed for this phase. The network is compatible with the homochiral arrangement of rodlike molecules with successive twists by a proper angle between adjacent junctions.

6.
Phys Chem Chem Phys ; 25(1): 724-735, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36507626

ABSTRACT

This paper characterizes the molecular mobility that triggers the cold crystallization abilities in 5'-(2,3-difluorophenyl)-2'-ethoxy-4-pentyloxy-2,3-difluorotolane (short name DFP25DFT) material by broadband dielectric spectroscopy (BDS). We analyze the properties of identified molecular motions by referring to the Vogel-Fulcher-Tammann (VFT) model for the structural α-process associated with molecular rotation in isotropic liquid and the Eyring and Starkweather approach for the thermally activated processes, ß-process related to intramolecular movement in liquid and glassy state and emerging during cold crystallization α'-process ascribed to confined movements of molecules located adjacent to crystalline surfaces. To characterize the material, we employ single-crystal X-ray diffraction, differential scanning calorimetry (DSC), adiabatic calorimetry, and polarizing optical microscopy (POM), while we utilize molecular mechanics simulations (MM2) to explore molecular flexibility. Our study focuses on inter- and intramolecular interactions that determine the cold-crystallization tendency. We demonstrate that the solidification path is controlled by the fragility of the system, the dipole-dipole attraction, and the intramolecular dynamics. The study of cold crystallization kinetics under isothermal conditions reveals the complexity of the process: the formation of two crystalline phases, Cr2 and Cr3, proceeding in different modes. This feature discloses the possibility of switching the crystal growth between three- and two-dimensional in the cold-crystallization process driven by different mechanisms.


Subject(s)
Glass , Molecular Dynamics Simulation , Crystallization , Kinetics , Calorimetry, Differential Scanning , Glass/chemistry
7.
Angew Chem Int Ed Engl ; 60(42): 22839-22848, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34374186

ABSTRACT

Control over the stacking patterns in 2D molecular assemblies is demonstrated using chemical modification. A target system is a hydrogen-bonded cocrystal (2:1) composed of 2-pyrrolidone (Py) and chloranilic acid (CA) (PyCA). X-ray crystallography showed that weak intersheet interactions give rise to a variety of metastable overlapping patterns comprised of the 2D assemblies mainly formed via hydrogen bonds, affording reversible and irreversible structural phase transitions. We prepared cocrystals of Py and anilic acids bearing different halogens, in which 2D assemblies isostructural with those observed in PyCA exhibit various overlapping patterns. The order of stability for each overlapping pattern estimated using calculations of the intermolecular interactions did not completely coincide with those indicated by our experimental results, which can be explained by considering the entropic effect: the molecular motion of Py as detected using nuclear quadrupole resonance spectroscopy.

8.
Chemistry ; 27(40): 10293-10302, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34031926

ABSTRACT

A recent intriguing finding that a helical network arrangement forms the bicontinuous cubic phase is attracting great attention for the possibility of new routes to asymmetric synthesis by achiral molecules. However, the design of the molecular structure for the cubic phase is still unrevealed. In this work, a nonsymmetric core molecule with larger naphthalene and smaller benzene moieties at each side of the central linkage and the same disiloxanyldecyloxy terminal at both terminals is shown to be the first example of molecule forming both single-layered and double-layered core assembly modes in the Ia3d phase as a single molecule system. The molecule forms the former mode at high temperatures as a thermodynamically stable phase, similarly to the symmetric naphthalene core system, whereas, on cooling below a temperature (∼350 K), a metastable Ia3d phase forms a double-layered core state down to room temperature, which is common to the benzene core system. As another effect of the nonsymmetric core, the cubic phase is maintained at room temperature for more than 100 days with slight distortion. Infrared spectral studies and quantum chemical calculations suggested the easy transformation between the two core assembly modes. The core nonsymmetry can be a versatile fine-tuning of the core assembly mode and phase stability for the cubic phase molecules.

9.
Langmuir ; 36(48): 14699-14709, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33232164

ABSTRACT

Although the transition between a bilayer and an interdigitated membrane of a surfactant and lipid has been widely known for long, its mechanism remains unclear. This study reveals the transition mechanism of a cationic surfactant, dioctadecyldimethylammonium chloride (DODAC), through experiments and theoretical calculations. Experimentally, the transition from the interdigitated to bilayer structure in the gel phase of DODAC is found to be induced by adding hydrophobic molecules such as n-alkane and its derivatives. Further addition induces a different transition to another bilayer phase. Our theory, considering the competition of the electrostatic interaction between cationic headgroups and the hydrophobic interaction emerging at the alkyl-chain ends exposed to water, reproduces these two phase transitions. In addition, changes in alkyl-chain packing in the membranes at these transitions are reproduced. The underlying mechanism is that the interdigitated membrane is formed at a small additive content due to electrostatic repulsion. As the energetic disadvantage with respect to the hydrophobic interaction becomes dominant as the content increases, the transition to the bilayer occurs at a specific content. The bilayer-bilayer transition at a higher content is induced by the change in the balance of these interactions. Based on a similar concept, we suggest the mechanism of the additive-induced bilayer-interdigitated transition of phospholipids, i.e., neutrally charged (zwitterionic) surfactants.

10.
Phys Chem Chem Phys ; 22(42): 24236-24248, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33084672

ABSTRACT

This article presents the molecular dynamics and solidification behavior of a 2,3-difluoro-4-propylphenyl 2,3-difluoro-4-(4-pentylcyclohexyl)benzoate nematic liquid crystal (5C4FPB3) observed by broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC). Polarized optical microscopy (POM) is also performed to confirm the phase transition temperatures. Our investigation reveals rare crystallization of the orientationally disordered crystal (ODIC) phase from the nematic phase and a glass transition of the crystal at cooling rates higher than 1 K min-1. The deconvolution of the dielectric spectra with derivative techniques is necessary because of the complex molecular dynamics in the crystalline phase. The BDS method enables us to capture the relaxation processes reflecting pre-crystallization molecular movements. The kinetics of nonisothermal crystallization is studied using the Ozawa, Mo, and isoconversional methods. The present studies suggest that the dominant factor of the crystal growth mechanism depends on the cooling rate. Two types of crystallization mechanisms are identified at cooling rates lower and higher than 5 K min-1. We design a diagram with crystallization and glass transition borders against the cooling rates. Estimations show that crystallization of the present compound can be bypassed at cooling rates higher than 78 kK min-1, at which a glass transition of the nematic phase occurs. We show various scenarios of the molecular order and the crystallization mechanism designed based on the process rate.

11.
Phys Chem Chem Phys ; 22(10): 5418-5426, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-31904060

ABSTRACT

The relationship between the membrane bending modulus (κ) and compressibility modulus (KA) depends on the extent of coupling between the two monolayers (leaflets). Using neutron spin echo (NSE) spectroscopy, we investigate the effects of n-alkanes on the interleaflet coupling of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. Structural studies with small-angle X-ray and neutron scattering (SAXS and SANS) showed that the bilayer thickness increased with increasing n-alkane length, while NSE suggested that the bilayers became softer. Additional measurements of the membrane thickness fluctuations with NSE suggested that the changes in elastic moduli were due to a decrease in coupling between the leaflets upon addition of the longer n-alkanes. The decreased coupling with elongating n-alkane length was explained based on the n-alkane distribution within the bilayers characterized by SANS measurement of bilayers composed of protiated DPPC and deuterated n-alkanes. A higher fraction of the incorporated long n-alkanes were concentrated at the central plane of the bilayers and decreased the physical interaction between the leaflets. Using NSE and SANS, we successfully correlated changes in the mesoscopic collective dynamics and microscopic membrane structure upon incorporation of n-alkanes.

12.
Phys Chem Chem Phys ; 21(42): 23705-23712, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31633143

ABSTRACT

1,2-Bis(4'-n-alkoxybenzoyl)hydrazine [BABH(n), n is the number of carbon atoms in the alkyl chain] exhibits two different Ia3[combining macron]d cubic phases depending on the chain length (5 ≤n≤ 13 and 15 ≤n≤ 22). The molecular packing modes, not only of molecular cores but also of alkyl chains, are investigated through a maximum entropy method (MEM) and an analysis of the chain-length dependence of the body diagonal of the unit cell. The analyses revealed the difference in molecular packing. The short-chain Ia3[combining macron]d structure of BABH(n) (5 ≤n≤ 13) is constructed by single-layered core motifs and bilayers of alkyl chains, in which the orientation is tilted from the normal to the layer. The long-chain Ia3[combining macron]d structure (15 ≤n≤ 22) is formed by double-layered core motifs and monolayers of alkyl chains, in which the orientation is normal to the layer. Based on the molecular packing modes, the reentrant behavior between the two Ia3[combining macron]d phases was clarified. It was revealed that the alkyl chains of BABH(n) molecules play an essential role in the formation and stability of the two Ia3[combining macron]d structures.

13.
J Chem Phys ; 150(6): 064904, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30769992

ABSTRACT

We investigate the phase separation of a ternary lipid bilayer including n-alkane and construct the ternary phase diagram. When a certain proportion of a long n-alkane is mixed with a binary mixture of lipids, which exhibit the disordered liquid-crystalline phase and the ordered gel phase at room temperature, we observed the characteristic morphology of bilayers with phase separation. The ordered bilayer forms flat and rigid domains, which is connected or rimmed with flexible domains in the disordered phase. The asymmetric emergence of the phase separation region close to the ordered phase side is interpreted based on the almost equal distribution of the n-alkane to the ordered and disordered phase domains.

14.
Phys Chem Chem Phys ; 20(8): 5850-5855, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29412201

ABSTRACT

Photoinduced changes in the upper critical solution temperature (UCST) were investigated for polymer solutions in an azobenzene-doped liquid crystal solvent. The UCST of poly(methyl methacrylate) (PMMA) and polystyrene (PS) solutions dropped upon irradiation with UV light, which induces trans-cis photoisomerization of the doped azo dye. In the case of PMMA solutions, the photoinduced drop in UCST was significantly larger than that expected from previous studies using azo-based polymers and common solvents. Moreover, the UCST of PS solutions also decreased under photoirradiation, in a direction opposite to that expected from the contribution of polarity. X-ray diffraction data of the solvent suggest that the decreased intermolecular interaction in the solvent (i.e. larger distance between the solvent molecules) is responsible for the photoresponsive behavior of the UCST. The proposed mechanism is consistent with the Flory-Huggins theory. Using such photoresponses in the UCST, the isothermal transition between 2-phase and 1-phase states by photoirradiation was demonstrated.

15.
Phys Chem Chem Phys ; 19(37): 25518-25526, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28900636

ABSTRACT

The reported layer spacings (dsmectic) of six homologues of mesogens exhibiting orthogonal smectic phases (SmE, SmB, and SmA phases) are reexamined. The slopes of the linear dependences on chain length (n, the number of carbon atoms in the hydrocarbon chain) are clearly categorized into two groups: 1.9 Å (CH2)-1 and 1.4 Å (CH2)-1. It is clarified that in the former the molecules take a rod-like form (rod-form; category-I), whereas in the latter the molecules are bent around the connection between the core and chain moieties (bent-form; category-II). The average relative positions of adjacent molecules within the smectic structures are deduced from the intercept of the linear functions of dsmectic against n. The relation between and the features of molecules belonging to the two categories are discussed for molecular design of functional smectic liquid crystals.

16.
Phys Chem Chem Phys ; 19(29): 19434-19441, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28718465

ABSTRACT

Single-crystal structural analyses and heat capacity measurements were performed on two Schiff base liquid crystal compounds, 5CBAA (4-chlorobenzylidene-4'-pentyloxyaniline) and 5ABCA (4-pentyloxybenzylidene-4'-chloroaniline). The alkyloxy-chain of a 5CBAA molecule was conformationally ordered in the crystal at room temperature. While that of 5ABCA was partially disordered in the room temperature phase but ordered in a low-temperature phase at 100 K. The structural phase transition involving the disordering of the conformation was observed at 107 K in the heat capacity of 5ABCA. Both compounds showed two liquid crystalline phases, SmBCr and SmAd. The net entropy change associated with the chain disordering was essentially the same in them despite the difference in the orientation of their central -CH[double bond, length as m-dash]N- moiety. The layer-spacings of SmBCr and SmAd phases were analyzed for their chain-length dependence in both series of mesogens (nCBAA and nABCA), as well as in the case of nBBAA (4-bromobenzylidene-4'-alkyloxyaniline). The results reveal that these smectic structures are composed of alternately stacked core- and chain-layers with an antiparallel arrangement of cores and a bent-form of molecules.

17.
J Chem Phys ; 146(7): 074503, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28228039

ABSTRACT

A structural phase transition at 151.6 K of the title compound [bis(trans-4-butylcyclohexyl)methanol] is examined by X-ray diffraction crystallography, Fourier-transform infrared spectroscopy, and adiabatic calorimetry. A general consideration on possible superstructures indicates that a single modulation wave is sufficient to drive this cell-quintupling transition. The entropy of transition determined calorimetrically indicates that two conformations are dominant in the room-temperature phase in contrast to the fivefold disorder expected from the structure of the low-temperature phase.

18.
J Phys Chem B ; 121(6): 1438-1447, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28124910

ABSTRACT

Phase behaviors of two homologous binary systems of 4-alkyl-4'-cyanobiphenyl (nCB, n being the number of carbon atoms in the alkyl chain) and 4-alkoxy-4'-cyanobiphenyl (nOCB) were investigated. Their phase diagrams were drawn against an averaged chain length, n*. The phase boundary curves between neamtic (N) and smectic Ad (SmAd) phases in nCB/mCB (n = 3-6; m = 8, 9) binary systems were classified into four depending on four combinations of even- and odd-numbered n and m; even/even, odd/even, even/odd, and odd/odd. The similar odd-even effect was confirmed for nOCB/mOCB (n = 5, 6; m = 8, 9) binary systems. To elucidate the odd-even effect on the phase diagrams, the SmAd structures were investigated through an analysis of n (n*) dependence of the layer spacing of the SmAd structure, dSmAd, of neat nCB (n = 8-10), neat nOCB (n = 8-10), and nCB/8CB (n = 0-7) binary mixtures. The odd-even effect, the behavior of 0CB/8CB system, and the difference between nCB and nOCB were clarified based on their SmAd structures.

19.
Phys Rev E ; 96(4-1): 040601, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29347486

ABSTRACT

The inapplicability of the DLVO theory to multilayered anionic bilayers is found in terms of the co-ion-valence dependence of the lamellar repeat distance. Most of the added salt is expelled from the interlamellar space to the bulk due to the Gibbs-Donnan effect on multiple bilayers with the bulk. The electrostatic double-layer interaction is well expressed by the formula recently proposed by Trefalt. The osmotic pressure due to the expelled ions, rather than the van der Waals interaction, is the main origin of the attractive force between the bilayers.

20.
ACS Appl Mater Interfaces ; 8(43): 29649-29657, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27726324

ABSTRACT

Colloidal composites consisting of polymer-brush-afforded silica particles (P-SiPs) and a nematic liquid crystal (LC) exhibited three gel states with distinct viscoelastic and/or optical properties depending on temperature: (1) opaque hard gel, (2) translucent hard gel, and (3) translucent soft gel. We demonstrated that the transitions of the optical property and the hardness of the gels were due to the phase transition of the LC matrix and the glass transition of the grafted polymers of P-SiPs, respectively. We then revealed that the gelation (the formation of the translucent soft gel) was caused by the phase separation of P-SiPs and LC matrix in an isotropic phase based on spinodal decomposition. In addition, the particle concentration and molecular weight of the grafted polymer of P-SiPs were observed to significantly affect the elastic moduli and thermal stability of the composite gels. By the addition of an azobenzene derivative into an LC matrix, we achieved photochemical switching of the transparency of the composites based on the photoinduced phase transition of LCs, while keeping self-supporting ability of the composite gel.

SELECTION OF CITATIONS
SEARCH DETAIL
...