Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 384(3): 658-66, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16421712

ABSTRACT

Single-nucleotide polymorphisms (SNP) are the most common form of sequence variation in the human genome. Large-scale studies demand high-throughput SNP genotyping platforms. Here we demonstrate the potential of encoded nanowires for use in a particles-based universal array for high-throughput SNP genotyping. The particles are encoded sub-micron metallic nanorods manufactured by electroplating inert metals such as gold and silver into templates and releasing the resulting striped nanoparticles. The power of this technology is that the particles are intrinsically encoded by virtue of the different reflectivity of adjacent metal stripes, enabling the generation of many thousands of unique encoded substrates. Using SNP found within the cytochrome P450 gene family, and a universal short oligonucleotide ligation strategy, we have demonstrated the simultaneous genotyping of 15 SNP; a format requiring discrimination of 30 encoded nanowires (one per allele). To demonstrate applicability to real-world applications, 160 genotypes were determined from multiplex PCR products from 20 genomic DNA samples.


Subject(s)
DNA/analysis , Nanoparticles/chemistry , Nanotechnology/methods , Polymorphism, Single Nucleotide/genetics , DNA/genetics , Genotype , Humans , Nanotubes/chemistry , Polymerase Chain Reaction/methods , Sensitivity and Specificity
2.
Nanobiotechnology ; 1(4): 327-335, 2005.
Article in English | MEDLINE | ID: mdl-32218710

ABSTRACT

In this paper we describe a molecular beacon format assay in which encoded nanowire particles are used to achieve multiplexing. We demonstrate this principle with the detection of five viral pathogens; Hepatitis A virus, Hepatitis C virus, West Nile Virus, Human Immune Deficiency virus and Severe Acute Respiratory Syndrome virus. Oligonucleotides are designed complementary to a target sequence of interest containing a 3' universal fluorescence dye. A 5' thiol causes the oligonucleotides to self-assemble onto the metal nanowire. The single-stranded oligonucleotide contains a self-complementary hairpin stem sequence of 10 bases that forces the 3' fluorophore to come into contact with the metallic nanowire surface, thereby quenching the fluorescence. Upon addition of target DNA, there is hybridization with the complementary oligonucleotides. The resulting DNA hybrid is rigid, unfolds the hairpin structure, and causes the fluorophore to be moved away from the surface such that it is no longer quenched. By using differently encoded nanowires, each conjugated with a different oligonucleotide sequence, multiplexed DNA assays are possible using a single fluorophore, from a multiplexed RT-PCR reaction.

3.
Genome Res ; 14(3): 331-42, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14993201

ABSTRACT

In this report, we have achieved a richer view of the transcriptome for Chromosomes 21 and 22 by using high-density oligonucleotide arrays on cytosolic poly(A)(+) RNA. Conservatively, only 31.4% of the observed transcribed nucleotides correspond to well-annotated genes, whereas an additional 4.8% and 14.7% correspond to mRNAs and ESTs, respectively. Approximately 85% of the known exons were detected, and up to 21% of known genes have only a single isoform based on exon-skipping alternative expression. Overall, the expression of the well-characterized exons falls predominately into two categories, uniquely or ubiquitously expressed with an identifiable proportion of antisense transcripts. The remaining observed transcription (49.0%) was outside of any known annotation. These novel transcripts appear to be more cell-line-specific and have lower and less variation in expression than the well-characterized genes. Novel transcripts were further characterized based on their distance to annotations, transcript size, coding capacity, and identification as antisense to intronic sequences. By RT-PCR, 126 novel transcripts were independently verified, resulting in a 65% verification rate. These observations strongly support the argument for a re-evaluation of the total number of human genes and an alternative term for "gene" to encompass these growing, novel classes of RNA transcripts in the human genome.


Subject(s)
Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 22/genetics , RNA/genetics , Transcription, Genetic/genetics , Cell Line , Cell Line, Tumor , Chromosome Mapping/methods , DNA, Neoplasm/genetics , Gene Expression Profiling/methods , Genes/genetics , Genes, Neoplasm/genetics , Humans , Jurkat Cells/chemistry , Jurkat Cells/metabolism , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Probes/genetics , RNA, Messenger/genetics
4.
Cell ; 116(4): 499-509, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-14980218

ABSTRACT

Using high-density oligonucleotide arrays representing essentially all nonrepetitive sequences on human chromosomes 21 and 22, we map the binding sites in vivo for three DNA binding transcription factors, Sp1, cMyc, and p53, in an unbiased manner. This mapping reveals an unexpectedly large number of transcription factor binding site (TFBS) regions, with a minimal estimate of 12,000 for Sp1, 25,000 for cMyc, and 1600 for p53 when extrapolated to the full genome. Only 22% of these TFBS regions are located at the 5' termini of protein-coding genes while 36% lie within or immediately 3' to well-characterized genes and are significantly correlated with noncoding RNAs. A significant number of these noncoding RNAs are regulated in response to retinoic acid, and overlapping pairs of protein-coding and noncoding RNAs are often coregulated. Thus, the human genome contains roughly comparable numbers of protein-coding and noncoding genes that are bound by common transcription factors and regulated by common environmental signals.


Subject(s)
Chromosomes, Human, Pair 21 , Chromosomes, Human, Pair 22 , Transcription Factors/metabolism , Amino Acid Motifs , Binding Sites , Cell Line , Chromatin/metabolism , Chromosome Mapping , CpG Islands , Exons , Expressed Sequence Tags , Genome, Human , Humans , Jurkat Cells , Models, Genetic , Polymerase Chain Reaction , Precipitin Tests , Promoter Regions, Genetic , Protein Binding , RNA/chemistry , RNA/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tretinoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...