Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Exp Neurol ; 376: 114772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599366

ABSTRACT

Animals on Earth need to hold postures and execute a series of movements under gravity and atmospheric pressure. VAChT-Cre is a transgenic Cre driver mouse line that expresses Cre recombinase selectively in motor neurons of S-type (slow-twitch fatigue-resistant) and FR-type (fast-twitch fatigue-resistant). Sequential motor unit recruitment is a fundamental principle for fine and smooth locomotion; smaller-diameter motor neurons (S-type, FR-type) first contract low-intensity oxidative type I and type IIa muscle fibers, and thereafter larger-diameter motor neurons (FInt-type, FF-type) are recruited to contract high-intensity glycolytic type IIx and type IIb muscle fibers. To selectively eliminate S- and FR-type motor neurons, VAChT-Cre mice were crossbred with NSE-DTA mice in which the cytotoxic diphtheria toxin A fragment (DTA) was expressed in Cre-expressing neurons. The VAChT-Cre;NSE-DTA mice were born normally but progressively manifested various characteristics, including body weight loss, kyphosis, kinetic and postural tremor, and muscular atrophy. The progressive kinetic and postural tremor was remarkable from around 20 weeks of age and aggravated. Muscular atrophy was apparent in slow muscles, but not in fast muscles. The increase in motor unit number estimation was detected by electromyography, reflecting compensatory re-innervation by remaining FInt- and FF-type motor neurons to the orphaned slow muscle fibers. The muscle fibers gradually manifested fast/slow hybrid phenotypes, and the remaining FInt-and FF-type motor neurons gradually disappeared. These results suggest selective ablation of S- and FR-type motor neurons induces progressive muscle fiber-type transition, exhaustion of remaining FInt- and FF-type motor neurons, and late-onset kinetic and postural tremor in mice.


Subject(s)
Mice, Transgenic , Motor Neurons , Tremor , Animals , Motor Neurons/pathology , Motor Neurons/physiology , Mice , Tremor/genetics , Tremor/physiopathology , Muscle Fibers, Slow-Twitch/pathology , Muscle Fibers, Fast-Twitch/pathology , Muscular Diseases/physiopathology , Muscular Diseases/pathology , Muscular Diseases/etiology , Muscle Fatigue/physiology , Posture/physiology , Animals, Newborn , Disease Models, Animal
2.
Transgenic Res ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684589

ABSTRACT

Golli-myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli-myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli-myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli-myelin basic protein knockout through the generation of conditional knockout mice (Golli-myelin basic proteinsfl/fl; E3CreN), in which Golli-myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli-myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli-myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli-myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli-myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli-myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.

3.
Protein Sci ; 33(4): e4961, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511674

ABSTRACT

Misfolding of mutant Cu/Zn-superoxide dismutase (SOD1) has been implicated in familial form of amyotrophic lateral sclerosis (ALS). A natively folded SOD1 forms a tight homodimer, and the dimer dissociation has been proposed to trigger the oligomerization/aggregation of SOD1. Besides increasing demand for probes allowing the detection of monomerized forms of SOD1 in various applications, the development of probes has been limited to conventional antibodies. Here, we have developed Mb(S4) monobody, a small synthetic binding protein based on the fibronectin type III scaffold, that recognizes a monomeric but not dimeric form of SOD1 by performing combinatorial library selections using phage and yeast-surface display methods. Although Mb(S4) was characterized by its excellent selectivity to the monomeric conformation of SOD1, the monomeric SOD1/Mb(S4) complex was not so stable (apparent Kd ~ µM) as to be detected in conventional pull-down experiments. Instead, the complex of Mb(S4) with monomeric but not dimeric SOD1 was successfully trapped by proximity-enabled chemical crosslinking even when reacted in the cell lysates. We thus anticipate that Mb(S4) binding followed by chemical crosslinking would be a useful strategy for in vitro and also ex vivo detection of the monomeric SOD1 proteins.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Superoxide Dismutase-1/chemistry , Amyotrophic Lateral Sclerosis/genetics , Protein Folding , Superoxide Dismutase/chemistry , Saccharomyces cerevisiae/metabolism , Zinc/metabolism , Mutation
4.
J Biol Chem ; 300(2): 105629, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199563

ABSTRACT

In contrast to stage-specific transcription factors, the role of ubiquitous transcription factors in neuronal development remains a matter of scrutiny. Here, we demonstrated that a ubiquitous factor NF-Y is essential for neural progenitor maintenance during brain morphogenesis. Deletion of the NF-YA subunit in neural progenitors by using nestin-cre transgene in mice resulted in significant abnormalities in brain morphology, including a thinner cerebral cortex and loss of striatum during embryogenesis. Detailed analyses revealed a progressive decline in multiple neural progenitors in the cerebral cortex and ganglionic eminences, accompanied by induced apoptotic cell death and reduced cell proliferation. In neural progenitors, the NF-YA short isoform lacking exon 3 is dominant and co-expressed with cell cycle genes. ChIP-seq analysis from the cortex during early corticogenesis revealed preferential binding of NF-Y to the cell cycle genes, some of which were confirmed to be downregulated following NF-YA deletion. Notably, the NF-YA short isoform disappears and is replaced by its long isoform during neuronal differentiation. Forced expression of the NF-YA long isoform in neural progenitors resulted in a significant decline in neuronal count, possibly due to the suppression of cell proliferation. Collectively, we elucidated a critical role of the NF-YA short isoform in maintaining neural progenitors, possibly by regulating cell proliferation and apoptosis. Moreover, we identified an isoform switch in NF-YA within the neuronal lineage in vivo, which may explain the stage-specific role of NF-Y during neuronal development.


Subject(s)
CCAAT-Binding Factor , Cerebral Cortex , Animals , Mice , CCAAT-Binding Factor/genetics , CCAAT-Binding Factor/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Gene Expression Regulation , Neurogenesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription Factors/metabolism
5.
Dev Growth Differ ; 66(1): 4-20, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37991125

ABSTRACT

The establishment of animal models for Parkinson's disease (PD) has been challenging. Nevertheless, once established, they will serve as valuable tools for elucidating the causes and pathogenesis of PD, as well as for developing new strategies for its treatment. Following the recent discovery of a series of PD causative genes in familial cases, teleost fishes, including zebrafish and medaka, have often been used to establish genetic PD models because of their ease of breeding and gene manipulation, as well as the high conservation of gene orthologs. Some of the fish lines can recapitulate PD phenotypes, which are often more pronounced than those in rodent genetic models. In addition, a new experimental teleost fish, turquoise killifish, can be used as a sporadic PD model, because it spontaneously manifests age-dependent PD phenotypes. Several PD fish models have already made significant contributions to the discovery of novel PD pathological features, such as cytosolic leakage of mitochondrial DNA and pathogenic phosphorylation in α-synuclein. Therefore, utilizing various PD fish models with distinct degenerative phenotypes will be an effective strategy for identifying emerging facets of PD pathogenesis and therapeutic modalities.


Subject(s)
Killifishes , Parkinson Disease , Animals , Parkinson Disease/genetics , Parkinson Disease/pathology , Zebrafish/genetics , Models, Animal , Mitochondria
6.
Biochem Biophys Res Commun ; 693: 149384, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38113722

ABSTRACT

The nucleolus serves a multifaceted role encompassing not only rRNA transcription and ribosome synthesis, but also the intricate orchestration of cell cycle regulation and the modulation of cellular senescence. G-patch domain containing 4 (GPATCH4) stands as one among the nucleolar proteins; however, its functional significances remain still unclear. In order to elucidate the functions of GPATCH4, we examined the effects of its dysfunction on cellular proliferation, alterations in nucleolar architecture, apoptotic events, and cellular senescence. Through experimentation conducted on cultured neuroblastoma SH-SY5Y cells, the reduction of GPATCH4 caused inhibition of cellular proliferation, concurrently fostering escalated apoptotic susceptibilities upon exposure to high-dose etoposide. In the realm of nucleolar morphology comparisons, a discernible decline was noted in the count of nucleoli per nucleus, concomitant with a significant expansion in the area occupied by individual nucleoli. Upon induction of senescence prompted by low-dose etoposide, GPATCH4 knockdown resulted in decreased cell viability and increased expression of senescence-associated markers, namely senescence-associated ß-galactosidase (SA-ß-GAL) and p16. Furthermore, GPATCH4 dysfunction elicited alterations in the gene expression profile of the ribosomal system. In sum, our findings showed that GPATCH4 is a pivotal nucleolar protein that regulates nucleolar morphology and is correlated with cell viability.


Subject(s)
Neuroblastoma , Humans , Etoposide/pharmacology , Cell Survival , Neuroblastoma/metabolism , Cell Nucleolus/metabolism , Cellular Senescence , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 120(23): e2214652120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252975

ABSTRACT

α-Synuclein accumulates in Lewy bodies, and this accumulation is a pathological hallmark of Parkinson's disease (PD). Previous studies have indicated a causal role of α-synuclein in the pathogenesis of PD. However, the molecular and cellular mechanisms of α-synuclein toxicity remain elusive. Here, we describe a novel phosphorylation site of α-synuclein at T64 and the detailed characteristics of this post-translational modification. T64 phosphorylation was enhanced in both PD models and human PD brains. T64D phosphomimetic mutation led to distinct oligomer formation, and the structure of the oligomer was similar to that of α-synuclein oligomer with A53T mutation. Such phosphomimetic mutation induced mitochondrial dysfunction, lysosomal disorder, and cell death in cells and neurodegeneration in vivo, indicating a pathogenic role of α-synuclein phosphorylation at T64 in PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Phosphorylation , Lewy Bodies/metabolism , Brain/metabolism
8.
Acta Neuropathol Commun ; 10(1): 28, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246273

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder, characterized by the presence of eosinophilic inclusions (NIIs) within nuclei of central and peripheral nervous system cells. This study aims to identify the components of NIIs, which have been difficult to analyze directly due to their insolubility. In order to establish a method to directly identify the components of NIIs, we first analyzed the huntingtin inclusion-rich fraction obtained from the brains of Huntington disease model mice. Although the sequence with expanded polyglutamine could not be identified by liquid-chromatography mass spectrometry, amino acid analysis revealed that glutamine of the huntingtin inclusion-rich fraction increased significantly. This is compatible with the calculated amino acid content of the transgene product. Therefore, we applied this method to analyze the NIIs of diseased human brains, which may have proteins with compositionally biased regions, and identified a serine-rich protein called hornerin. Since the analyzed NII-rich fraction was also serine-rich, we suggested hornerin as a major component of the NIIs. A specific distribution of hornerin in NIID was also investigated by Matrix-assisted laser desorption/ionization imaging mass spectrometry and immunofluorescence. Finally, we confirmed a variant of hornerin by whole-exome sequencing and DNA sequencing. This study suggests that hornerin may be related to the pathological process of this NIID, and the direct analysis of NIIs, especially by amino acid analysis using the NII-rich fractions, would contribute to a deeper understanding of the disease pathogenesis.


Subject(s)
Intranuclear Inclusion Bodies , Neurodegenerative Diseases , Amino Acids , Animals , Intranuclear Inclusion Bodies/pathology , Mice , Neurodegenerative Diseases/pathology , Proteins , Serine
9.
Neurosci Res ; 180: 99-107, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35283247

ABSTRACT

Amyloid fibril deposits are a main source of pathology in neurodegenerative diseases. Normal proteins such as tau, alpha-synuclein, TDP-43 and others could form specific conformational fibrils called amyloid, which deposited in the brains of neurodegenerative diseases. Although the pathological roles of amyloids in cell death have been discussed a lot, their other functions have not been investigated well. Here, we studied the effect of amyloids on DNA transfection in vivo. We injected quantum dot labeled or non-labeled amyloid-preformed fibrils (PFFs) and a green fluorescent protein (EGFP) expression vector into organs including brain, testis, liver and calf muscle. GFP expression patterns were examined by immunohistochemistry and western blotting. At 24 h after injection, EGFP was predominantly expressed in the neurons in the cortex and the striatum, Leydig cells in testis, hepatocytes in the liver and muscle cells. EGFP expression was inhibited by an endocytosis inhibitor, sertraline in the brain and testis. The amyloid-PFFs potentiated Ca2+ transients shown by calcium imaging and EGFP expression in the brain was blocked by Ca blocker, cilnidipine. Our results show that amyloid-PFFs facilitate DNA transfection and can be used for a new gene delivery system in vivo.


Subject(s)
Amyloid , alpha-Synuclein , DNA/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Male , Neurons/metabolism , Transfection , alpha-Synuclein/metabolism
10.
Sci Rep ; 12(1): 4347, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35289333

ABSTRACT

Intrinsically disordered proteins (IDPs) have been in the spotlight for their unique properties, such as their lack of secondary structures and low sequence complexity. Alpha-synuclein and tau are representative disease-related IDPs with low complexity regions in their sequences, accumulating in the brains of patients with Parkinson disease and Alzheimer disease, respectively. Their heat resistance in particular was what attracted our attention. We assumed that there exist many other unidentified proteins that are resistant to heat-treatment, referred to as heat-stable proteins, which would also have low sequence complexity. In this study, we performed proteomic analysis of heat-stable proteins of mouse brains and found that proteins with compositionally biased regions are abundant in the heat-stable proteins. The proteins related to neurodegeneration are known to undergo different types of post-translational modifications (PTMs) such as phosphorylation and ubiquitination. We then investigated the heat-stability and aggregation properties of phosphorylated synuclein and tau with different phosphorylation sites. We suggest that PTMs can be important factors that determine the heat-stability and aggregation properties of a protein. IDPs identified in the heat-stable proteins of mouse brains would be candidates for the pathogenic proteins for neurodegeneration.


Subject(s)
Intrinsically Disordered Proteins , Proteomics , Animals , Hot Temperature , Humans , Intrinsically Disordered Proteins/chemistry , Mice , Protein Processing, Post-Translational , Protein Structure, Secondary
11.
Contact (Thousand Oaks) ; 4: 25152564211022515, 2021.
Article in English | MEDLINE | ID: mdl-37366377

ABSTRACT

Nearly twenty years ago a mutation in the VAPB gene, resulting in a proline to serine substitution (p.P56S), was identified as the cause of a rare, slowly progressing, familial form of the motor neuron degenerative disease Amyotrophic Lateral Sclerosis (ALS). Since then, progress in unravelling the mechanistic basis of this mutation has proceeded in parallel with research on the VAP proteins and on their role in establishing membrane contact sites between the ER and other organelles. Analysis of the literature on cellular and animal models reviewed here supports the conclusion that P56S-VAPB, which is aggregation-prone, non-functional and unstable, is expressed at levels that are insufficient to support toxic gain-of-function or dominant negative effects within motor neurons. Instead, insufficient levels of the product of the single wild-type allele appear to be required for pathological effects, and may be the main driver of the disease. In light of the multiple interactions of the VAP proteins, we address the consequences of specific VAPB depletion and highlight various affected processes that could contribute to motor neuron degeneration. In the future, distinction of specific roles of each of the two VAP paralogues should help to further elucidate the basis of p.P56S familial ALS, as well as of other more common forms of the disease.

12.
Neurosci Res ; 170: 341-349, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33309865

ABSTRACT

The pathological form of a-synuclein (a-syn) is transmitted through neural circuits in the brains of Parkinson disease (PD) patients and amplifies misfolded a-syn, further forming intracellular deposits. However, the details of a-syn pre-formed fibrils (PFFs) transmission in vivo have not been fully elucidated. By inoculating Quantum dots (QD)-labeled a-syn PFFs (QD-a-syn PFFs) into the unilateral striatum, we detected QD-a-syn PFFs in brain homogenates obtained from the ipsilateral and contralateral sides of the inoculated site and further obtained QD-a-syn PFFs enriched-particles with fluorescence-activated organelle sorting. Proteomic analysis suggested that QD-a-syn PFFs-enriched particles in the contralateral side were associated with component proteins of synapse. In contrast, QD-a-syn PFFs-enriched particles in the ipsilateral side were associated with proteins belonging to ER components. Immunostaining of brain sections confirmed that QD-a-syn PFFs in the contralateral side were co-localized with synaptic vesicle marker proteins in the cortex and striatum. Additionally, QD-a-syn PFFs in the ipsilateral side were more co-localized with ER marker proteins compared to the contralateral side. These results correspond to proteomic analysis. This study provides potential candidates for the subcellular localization of a-syn PFFs in vivo during the dissemination phase of seeds. These subcellular compartments could be involved in the transmission of seeds.


Subject(s)
Parkinson Disease , alpha-Synuclein , Brain/metabolism , Humans , Proteomics , Synaptic Vesicles/metabolism , alpha-Synuclein/metabolism
13.
Sci Rep ; 10(1): 21714, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303918

ABSTRACT

A heterotrimeric transcription factor NF-Y is crucial for cell-cycle progression in various types of cells. In contrast, studies using NF-YA knockout mice have unveiled its essential role in endoplasmic reticulum (ER) homeostasis in neuronal cells. However, whether NF-Y modulates a different transcriptome to mediate distinct cellular functions remains obscure. Here, we knocked down NF-Y in two types of neuronal cells, neuro2a neuroblastoma cells and mouse brain striatal cells, and performed gene expression profiling. We found that down-regulated genes preferentially contained NF-Y-binding motifs in their proximal promoters, and notably enriched genes related to ER functions rather than those for cell cycle. This contrasts with the profiling data of HeLa and embryonic stem cells in which distinct down-regulation of cell cycle-related genes was observed. Clustering analysis further identified several functional clusters where populations of the down-regulated genes were highly distinct. Further analyses using chromatin immunoprecipitation and RNA-seq data revealed that the transcriptomic difference was not correlated with DNA binding of NF-Y but with splicing of NF-YA. These data suggest that neuronal cells have a different type of transcriptome in which ER-related genes are dominantly modulated by NF-Y, and imply that NF-YA splicing alteration could be involved in this cell type-specific gene modulation.


Subject(s)
CCAAT-Binding Factor/genetics , CCAAT-Binding Factor/physiology , Cell Cycle/genetics , Neurons/physiology , Transcriptome/genetics , Alternative Splicing , Animals , Endoplasmic Reticulum/genetics , Gene Expression Profiling , HeLa Cells , Homeostasis/genetics , Humans , Mice , Neurons/metabolism , RNA Splicing
14.
J Biol Chem ; 295(29): 9768-9785, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32499373

ABSTRACT

Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the Huntingtin gene. Results from previous studies have suggested that transcriptional dysregulation is one of the key mechanisms underlying striatal medium spiny neuron (MSN) degeneration in HD. However, some of the critical genes involved in HD etiology or pathology could be masked in a common expression profiling assay because of contamination with non-MSN cells. To gain insight into the MSN-specific gene expression changes in presymptomatic R6/2 mice, a common HD mouse model, here we used a transgenic fluorescent protein marker of MSNs for purification via FACS before profiling gene expression with gene microarrays and compared the results of this "FACS-array" with those obtained with homogenized striatal samples (STR-array). We identified hundreds of differentially expressed genes (DEGs) and enhanced detection of MSN-specific DEGs by comparing the results of the FACS-array with those of the STR-array. The gene sets obtained included genes ubiquitously expressed in both MSNs and non-MSN cells of the brain and associated with transcriptional regulation and DNA damage responses. We proposed that the comparative gene expression approach using the FACS-array may be useful for uncovering the gene cascades affected in MSNs during HD pathogenesis.


Subject(s)
Corpus Striatum/metabolism , Flow Cytometry , Huntington Disease/metabolism , Transcriptome , Animals , Corpus Striatum/pathology , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Male , Mice , Mice, Transgenic
15.
Sci Rep ; 10(1): 7610, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376919

ABSTRACT

An ER transmembrane protein, vesicle-associated membrane protein-associated protein B (VAPB), binds to several organelle-resident membrane proteins to mediate ER-organelle tethering. Mutation in amyotrophic lateral sclerosis (ALS) induces protein misfolding and aggregation, leading to ER disorganization. Gain or loss of function is suggested for VAPB mutation, however comprehensive study focusing on VAPB-ER domain has yet been performed. We here conducted proteomic characterization of the ER containing VAPB and its ALS-linked P56S mutant. For this purpose, we first optimized the proteomics of different ER domains immuno-isolated from cultured cells, and identified ER sheet- and tubule-specific proteomes. By using these as references, we found that VAPB-ER proteome had intermediate ER domain properties but its tubular property was specifically decreased by its mutation. Biochemical, immunofluorescence and proximity ligation assays suggested this was mediated by delocalization of VAPB from ER tubules. The VAPB-ER proteomics further suggested reduced incorporation of multiple proteins located in different organelles, which was confirmed by proximity ligation assay. Taken together, our proteomics-based approach indicates altered ER domain properties and impaired ER-organelle tethering by VAPB mutation.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Endoplasmic Reticulum/metabolism , Mutation , Proteomics , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , Animals , Cell Line , Mice , Protein Domains , Protein Interaction Mapping , Vesicular Transport Proteins/genetics
16.
Biochem Biophys Res Commun ; 522(3): 655-661, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31785806

ABSTRACT

Many pathological proteins related to neurodegenerative diseases are misfolded, aggregating to form amyloid fibrils during pathogenesis. One of the pathological proteins, alpha-synuclein (α-syn), accumulates in the brains of Parkinson disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), which are designated as synucleinopathies. Recently, structural properties of abnormal accumulated proteins are suggested to determine the disease phenotype. However, the biochemical and structural characteristics of those accumulated proteins are still poorly understood. We previously reported the sequence and seed-structure-dependent polymorphic fibrils of α-syn and the polymorphism was identified by proteinase K-resistant cores determined by mass spectrometry (MS) analysis. In this study, we applied this method to analyze α-syn aggregates of MSA and DLB. To perform MS analysis on proteinase K-resistant cores, we first performed amplification of α-syn aggregates by seeding reaction and protein misfolding cyclic amplification (PMCA) to obtain a sufficient amount of aggregates. Using SDS insoluble fraction of the disease brain, we successfully amplified enough α-syn aggregates for MS analysis. We differentiated between mouse and human α-syn aggregates by MS analysis on proteinase K-resistant cores of the aggregates before and after amplification. The results suggest that structural properties of amplified α-syn fibrils are preserved after PMCA and these methods can be applicable in the study of pathological proteins of the neurodegenerative disorders.


Subject(s)
Endopeptidase K/metabolism , Protein Aggregation, Pathological/metabolism , Synucleinopathies/metabolism , alpha-Synuclein/metabolism , Aged , Animals , Brain/metabolism , Brain/pathology , Female , Humans , Male , Mice , Middle Aged , Protein Aggregates , Protein Aggregation, Pathological/pathology , Synucleinopathies/pathology
17.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1410-1420, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30790619

ABSTRACT

Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.


Subject(s)
Amyloid/ultrastructure , Protein Aggregates , alpha-Synuclein/ultrastructure , Amino Acid Sequence , Amino Acid Substitution , Amyloid/genetics , Amyloid/metabolism , Animals , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Mice , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/ultrastructure , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
18.
Neurosci Res ; 147: 58-63, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30391555

ABSTRACT

Huntington Disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the exon1 of huntingtin gene (HTT). The mutant HTT affects the transcriptional profile of neurons by disrupting the activities of transcriptional machinery and alters expression of many genes. In this study, we identified dysregulated non-coding RNAs (ncRNAs) in medium spiny neurons of 4-week-old HD model mouse. Also, we observed the intracellular localizations of Abhd11os and Neat1 ncRNAs by ViewRNA in situ hybridization, which could provide more precise detection, suggesting that it is a useful method to investigate the expression changes of genes with low expression levels.


Subject(s)
Huntington Disease/metabolism , Neurons/metabolism , RNA, Long Noncoding/biosynthesis , Serine Proteases/biosynthesis , Animals , Brain/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Gene Expression , Humans , Huntington Disease/genetics , Huntington Disease/pathology , In Situ Hybridization , Mice , Mice, Transgenic , Neurons/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Serine Proteases/genetics , Serine Proteases/metabolism , Transcriptome
19.
Biochem Biophys Res Commun ; 508(3): 729-734, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30528390

ABSTRACT

Alpha-synuclein (a-syn) aggregation in brain is implicated in several synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Until date, at least six disease-associated mutations in a-syn (namely A30P, E46K, H50Q, G51D, A53T, and A53E) are known to cause dominantly inherited familial forms of synucleinopathies. Previous studies using recombinant proteins have reported that a subset of disease-associated mutants show higher aggregation propensities and form spectroscopically distinguishable aggregates compared to wild-type (WT). However, morphological and biochemical comparison of the aggregates for all disease-associated a-syn mutants have not yet been performed. In this study, we performed electron microscopic examination, guanidinium hydrochloride (GdnHCl) denaturation, and protease digestion to classify the aggregates from their respective point mutations. Using electron microscopy we observed variations of amyloid fibrillar morphologies among the aggregates of a-syn mutants, mainly categorized into two groups: twisted fibrils observed for both WT and E46K while straight fibrils for the other mutants. GdnHCl denaturation experiments revealed the a-syn mutants except for E46K were more resistant than WT against the denaturation. Mass spectrometry analysis of protease-treated aggregates showed a variety of protease-resistant cores, which may correspond to their morphological properties. The difference of their properties could be implicated in the clinicopathological difference of synucleinopathies with those mutations.


Subject(s)
Mutant Proteins/metabolism , Parkinson Disease/metabolism , Protein Aggregates , alpha-Synuclein/metabolism , Animals , Endopeptidase K/metabolism , Humans , Mice , Mutant Proteins/chemistry , Mutant Proteins/ultrastructure , Mutation/genetics , alpha-Synuclein/chemistry , alpha-Synuclein/ultrastructure
20.
Acta Neuropathol Commun ; 6(1): 96, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30231908

ABSTRACT

Accumulating evidence suggests that the lesions of Parkinson's disease (PD) expand due to transneuronal spreading of fibrils composed of misfolded alpha-synuclein (a-syn), over the course of 5-10 years. However, the precise mechanisms and the processes underlying the spread of these fibril seeds have not been clarified in vivo. Here, we investigated the speed of a-syn transmission, which has not been a focus of previous a-syn transmission experiments, and whether a-syn pathologies spread in a neural circuit-dependent manner in the mouse brain. We injected a-syn preformed fibrils (PFFs), which are seeds for the propagation of a-syn deposits, either before or after callosotomy, to disconnect bilateral hemispheric connections. In mice that underwent callosotomy before the injection, the propagation of a-syn pathology to the contralateral hemisphere was clearly reduced. In contrast, mice that underwent callosotomy 24 h after a-syn PFFs injection showed a-syn pathology similar to that seen in mice without callosotomy. These results suggest that a-syn seeds are rapidly disseminated through neuronal circuits immediately after seed injection, in a prion-like seeding experiment in vivo, although it is believed that clinical a-syn pathologies take years to spread throughout the brain. In addition, we found that botulinum toxin B blocked the transsynaptic transmission of a-syn seeds by specifically inactivating the synaptic vesicle fusion machinery. This study offers a novel concept regarding a-syn propagation, based on the Braak hypothesis, and also cautions that experimental transmission systems may be examining a unique type of transmission, which differs from the clinical disease state.


Subject(s)
Brain/pathology , Nerve Net/pathology , Neurons/metabolism , Parkinson Disease/pathology , Prion Diseases/pathology , alpha-Synuclein/metabolism , Amyloid/toxicity , Animals , Botulinum Toxins, Type A/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Functional Laterality , Humans , Mice, Inbred C57BL , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Neurons/pathology , Protein Transport , Synaptic Vesicles/drug effects , Synaptic Vesicles/physiology , Time Factors , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...