Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 19120, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34580338

ABSTRACT

We have developed a new continuous monitoring system based on small seismic sources and distributed acoustic sensing (DAS). The source system generates continuous waveforms with a wide frequency range. Because the signal timing is accurately controlled, stacking the continuous waveforms enhances the signal-to-noise ratio, allowing the use of a small seismic source to monitor extensive areas (multi-reservoir). Our field experiments demonstrated that the monitoring signal was detected at a distance of ~ 80 km, and temporal variations of the monitoring signal (i.e., seismic velocity) were identified with an error of < 0.01%. Through the monitoring, we identified pore pressure variations due to geothermal operations and rains. When we used seafloor cable for DAS measurements, we identified the monitoring signals at > 10 km far from the source in high-spatial resolution. This study demonstrates that multi-reservoir in an extensive area can be continuously monitored at a relatively low cost by combining our seismic source and DAS.

2.
Sci Rep ; 7(1): 2868, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28588239

ABSTRACT

Fluids are thought to play an important role in controlling episodic tremor and slow slip (ETS) in subduction zones. Therefore, constraining the along-dip distribution of fluids is necessary to better understand source mechanism of ETS, and particularly the role played by fluids in ETS generation. Here, we report clear observations of coherent ScSp phases with a dense seismic array in western Shikoku, Japan, where ETS has been most active over the past decade. Using numerical simulations of elastic-wave propagation to reproduce the observed ScSp phases, we demonstrate that, relative to shallower depths, either the Vp/Vs ratio or the thickness of a low-velocity zone (LVZ) within the subducting oceanic crust increases with depth beneath the mantle wedge corner where ETS has been observed. Based on these depth dependences of the structural elements, a wide semi-ductile shear zone appears to be lubricated by high-pressurized fluid in the subducting oceanic crust at ETS source depths, and to be a key factor regulating ETS activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...