Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(24): eaaz8181, 2020 06.
Article in English | MEDLINE | ID: mdl-32577514

ABSTRACT

The study of hydrogenase enzymes (H2ases) is necessary because of their importance to a future hydrogen energy economy. These enzymes come in three distinct classes: [NiFe] H2ases, which have a propensity toward H2 oxidation; [FeFe] H2ases, which have a propensity toward H2 evolution; and [Fe] H2ases, which catalyze H- transfer. Modeling these enzymes has so far treated them as different species, which is understandable given the different cores and ligand sets of the natural molecules. Here, we demonstrate, using x-ray analysis and nuclear magnetic resonance, infrared, Mössbauer spectroscopies, and electrochemical measurement, that the catalytic properties of all three enzymes can be mimicked with only three isomers of the same NiFe complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...