Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(9): e0239540, 2020.
Article in English | MEDLINE | ID: mdl-32966316

ABSTRACT

Aflatoxin B1 (AFB1), a mycotoxin, is acutely hepatotoxic to many animals including humans. However, there are marked interspecies differences in sensitivity to AFB1-induced toxicity depending on bioactivation by cytochrome P450s (CYPs). In the present study, we examined the applicability of chimeric mice with humanized livers and derived fresh human hepatocytes for in vivo and vitro studies on AFB1 cytotoxicity to human hepatocytes. Chimeric mice with highly humanized livers and SCID mice received daily injections of vehicle (corn oil), AFB1 (3 mg/kg), and carbon tetrachloride (50 mg/kg) for 2 days. Histological analysis revealed that AFB1 promoted hepatocyte vacuolation and inflammatory cell infiltration in the area containing human hepatocytes. A novel human alanine aminotransferase 1 specific enzyme-linked immunosorbent assay demonstrated the acute toxicity of AFB1 to human hepatocytes in the chimeric mouse livers. The sensitivity of cultured fresh human hepatocytes isolated from the humanized liver mice for AFB1 cytotoxicity was comparable to that of primary human hepatocytes. Long-term exposure to AFB1 (6 or 14 days) produced a more severe cytotoxicity. The half-maximal lethal concentration was 10 times lower in the 2-week treatment than after 2 days of exposure. Lastly, the significant reduction of AFB1 cytotoxicity by a pan-CYP inhibitor or transfection with CYP3A4 specific siRNA clearly suggested that bioactivation of AFB1 catalyzed by CYPs was essential for AFB1 cytotoxicity to the human hepatocytes in our mouse model. Collectively, our results implicate the humanized liver mice and derived fresh human hepatocytes are useful models for studies of AFB1 cytotoxicity to human hepatocytes.


Subject(s)
Aflatoxin B1/toxicity , Hepatocytes/drug effects , Activation, Metabolic , Aflatoxin B1/administration & dosage , Aflatoxin B1/pharmacokinetics , Animals , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/pathology , Hepatocytes/transplantation , Humans , In Vitro Techniques , Lethal Dose 50 , Liver Transplantation , Male , Mice , Mice, SCID , RNA, Small Interfering/genetics , Transplantation Chimera , Vacuoles/drug effects , Vacuoles/pathology
2.
Nucl Recept ; 1: 5, 2003.
Article in English | MEDLINE | ID: mdl-12952540

ABSTRACT

BACKGROUND: Hepatocyte nuclear factor-4α (HNF4α; NR2A1) is an orphan member of the nuclear receptor superfamily involved in various processes that could influence endoderm development, glucose and lipid metabolism. A loss-of-function mutation in human HNF4α causes one form of diabetes mellitus called maturity-onset diabetes of the young type 1 (MODY1) which is characterized in part by a diminished insulin secretory response to glucose. The expression of HNF4α in a variety of tissues has been examined predominantly at the mRNA level, and there is little information regarding the cellular localization of the endogenous HNF4α protein, due, in part, to the limited availability of human HNF4α-specific antibodies. RESULTS: Monoclonal antibodies have been produced using baculovirus particles displaying gp64-HNF4α fusion proteins as the immunizing agent. The mouse anti-human HNF4α monoclonal antibody (K9218) generated against human HNF4α1/α2/α3 amino acids 3-49 was shown to recognize not only the transfected and expressed P1 promoter-driven HNF4α proteins, but also endogenous proteins. Western blot analysis with whole cell extracts from Hep G2, Huh7 and Caco-2 showed the expression of HNF4α protein, but HEK293 showed no expression of HNF4α protein. Nuclear-specific localization of the HNF4α protein was observed in the hepatocytes of liver cells, proximal tubular epithelial cells of kidney, and mucosal epithelial cells of small intestine and colon, but no HNF4α protein was detected in the stomach, pancreas, glomerulus, and distal and collecting tubular epithelial cells of kidney. The same tissue distribution of HNF4α protein was observed in humans and rats. Electron microscopic immunohistochemistry showed a chromatin-like localization of HNF4α in the liver and kidney. As in the immunohistochemical investigation using K9218, HNF4α mRNA was found to be localized primarily to liver, kidney, small intestine and colon by RT-PCR and GeneChip analysis. CONCLUSION: These results suggest that this method has the potential to produce valuable antibodies without the need for a protein purification step. Immunohistochemical studies indicate the tissue and subcellular specific localization of HNF4α and demonstrate the utility of K9218 for the detection of P1 promoter-driven HNF4α isoforms in humans and in several other mammalian species.

3.
Nucl Recept ; 1(1): 1, 2003 May 09.
Article in English | MEDLINE | ID: mdl-12904258

ABSTRACT

Liver X activated receptor alpha (LXRalpha) forms a functional dimeric nuclear receptor with RXR that regulates the metabolism of several important lipids, including cholesterol and bile acids. As compared with RXR, the LXRalpha protein level in the cell is low and the LXRalpha protein itself is very hard to detect. We have previously reported that the mRNA for LXRalpha is highly expressed in human cultured macrophages. In order to confirm the presence of the LXRalpha protein in the human macrophage, we have established a monoclonal antibody against LXRalpha, K-8607. The binding of mAb K-8607 to the human LXRalpha protein was confirmed by a wide variety of different techniques, including immunoblotting, immunohistochemistry, and electrophoretic mobility shift assay (EMSA). By immunoblotting with this antibody, the presence of native LXR protein in primary cultured human macrophage was demonstrated, as was its absence in human monocytes. This monoclonal anti-LXRalpha antibody should prove to be a useful tool in the analysis of the human LXRalpha protein.

4.
J Atheroscler Thromb ; 9(5): 233-42, 2002.
Article in English | MEDLINE | ID: mdl-12409633

ABSTRACT

Monoclonal antibodies (Mabs) are valuable reagents for the purification, characterization and immunolocalization of proteins. In this study, we raised Mabs against human peroxisome proliferator-activated receptors (PPARs) using baculovirus particles displaying surface glycoprotein gp64-fusion proteins as the immunizing agent. In this system, to display fusion proteins on the viral surface, the amino terminal sequences of human PPARd and PPARg2 are inserted in-frame between the signal sequence and the mature domain of the gp64 nucleotide sequence.Mabs were raised by immunization with whole virus without a purification of the target antigens. The Mabs generated by this novel method were shown to recognize not only the gp64-PPARs fusion protein, but also mature, expressed proteins by a wide variety of techniques, including immunohistochemistry, immunoblotting, and electrophoretic mobility shift assays (EMSAs). Transfection of the transfer vector containing a nucleotide sequence encoding less than 30 amino acids along with linearized baculovirus DNA allows for the production of a high affinity antibody against the corresponding mature form. This method is of potential utility in that it allows the production of valuable antibodies without the requirement of a protein purification step.


Subject(s)
Antibodies, Monoclonal/immunology , Receptors, Cytoplasmic and Nuclear/immunology , Transcription Factors/immunology , Animals , Antibodies, Monoclonal/genetics , Blotting, Western , CHO Cells , Cricetinae , Electrophoretic Mobility Shift Assay , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunohistochemistry , Mice , Mice, Inbred BALB C , Nucleopolyhedroviruses/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...