Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioanalysis ; 16(6): 389-402, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38334082

ABSTRACT

Validation of biomarker assays is crucial for effective drug development and clinical applications. Interlaboratory reproducibility is vital for reliable comparison and combination of data from different centers. This review summarizes interlaboratory studies of quantitative LC-MS-based biomarker assays using reference standards for calibration curves. The following points are discussed: trends in reports, reference and internal standards, evaluation of analytical validation parameters, study sample analysis and normalization of biomarker assay data. Full evaluation of these parameters in interlaboratory studies is limited, necessitating further research. Some reports suggest methods to address variations in biomarker assay data among laboratories, facilitating organized studies and data combination. Method validation across laboratories is crucial for reducing interlaboratory differences and reflecting target biomarker responses.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Reference Standards
2.
Bioanalysis ; 13(20): 1533-1546, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34696608

ABSTRACT

Aim: Although the fit-for-purpose approach has been proposed for validation procedures and acceptance criteria for biomarker assays, practical biomarker assays to facilitate clinical application and regulatory documents on biomarker assays remain limited. Materials & methods: We assigned six independent laboratories and selected three lysophosphatidylcholines (LPCs): LPC(16:0), LPC(18:0) and LPC(18:1) as model biomarkers. Using LC-MS, the following key validation parameters were evaluated: calibration curve, carryover, parallelism, precision and relative accuracy and these values were similar among all laboratories. Further, we determined LPC levels in six lots of rat plasma at unknown concentrations and compared them among the laboratories. Conclusion: Our multilaboratory validation and reproducibility data are useful for the development of future biomarker assay validation procedures, as well as regulatory documents.


Subject(s)
Lysophosphatidylcholines
3.
Bioorg Med Chem Lett ; 28(17): 2949-2952, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30006064

ABSTRACT

The tripeptide formyl-Met-Leu-Phe (fMLF) is a prototype of N-formylated chemotactic peptides for neutrophils owing to its ability to bind and activate the G protein-coupled formyl peptide receptor (FPR). Here, we developed an 18F-labeled fMLF derivative targeting FPR as a positron emission tomography (PET) imaging probe for bacterial infections. The study demonstrates that the fMLF derivative fMLFXYk(FB)k (X = Nle) has a high affinity for FPR (Ki = 0.62 ±â€¯0.13 nM). The radiochemical yield and purity of [18F]fMLFXYk(FB)k were 16% and >96%, respectively. The in vivo biodistribution study showed that [18F]fMLFXYk(FB)k uptake was higher in the bacterial infected region than in the non-infected region. We observed considerably higher infection-to-muscle ratio of 4.6 at 60 min after [18F]fMLFXYk(FB)k injection. Furthermore, small-animal PET imaging studies suggested that [18F]fMLFXYk(FB)k uptake in the bacterial infected region was clearly visualized 60 min after injection.


Subject(s)
Escherichia coli Infections/diagnostic imaging , Molecular Probes/chemistry , N-Formylmethionine Leucyl-Phenylalanine/chemistry , Positron-Emission Tomography , Dose-Response Relationship, Drug , Fluorine Radioisotopes , Molecular Probes/chemical synthesis , Molecular Structure , N-Formylmethionine Leucyl-Phenylalanine/chemical synthesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...