Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408786

ABSTRACT

The current anti-cancer treatments are not enough to eradicate tumors, and therefore, new modalities and strategies are still needed. Most tumors generate an inflammatory tumor microenvironment (TME) and maintain the niche for their development. Because of the critical role of inflammation via high-mobility group box 1 (HMGB1)-receptor for advanced glycation end-products (RAGE) signaling pathway in the TME, a novel compound possessing both anti-cancer and anti-inflammatory activities by suppressing the HMGB1-RAGE axis provides an effective strategy for cancer treatment. A recent work of our group found that some anti-cancer 3-styrylchromones have weak anti-inflammatory activities via the suppression of this axis. In this direction, we searched such anti-cancer molecules possessing potent anti-inflammatory activities and discovered 7-methoxy-3-hydroxy-styrylchromone (C6) having dual suppressive activities. Mechanism-of-action studies revealed that C6 inhibited the increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) under the stimulation of HMGB1-RAGE signaling and thereby suppressed cytokine production in macrophage-like RAW264.7 cells. On the other hand, in colorectal cancer HCT116 cells, C6 inhibited the activation of ERK1/2, cyclin-dependent kinase 1, and AKT, down-regulated the protein level of XIAP, and up-regulated pro-apoptotic Bax and caspase-3/7 expression. These alterations are suggested to be involved in the C6-induced suppression of cell cycle/proliferation and initiation of apoptosis in the cancer cells. More importantly, in cancer cells, the treatment of C6 potentiates the anti-cancer effects of DNA-damaging agents. Thus, C6 may be a promising lead for the generation of a novel class of cancer therapeutics.


Subject(s)
Colonic Neoplasms , HMGB1 Protein , Anti-Inflammatory Agents/pharmacology , Colonic Neoplasms/drug therapy , Extracellular Signal-Regulated MAP Kinases/metabolism , HMGB1 Protein/metabolism , Humans , MAP Kinase Signaling System , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction , Tumor Microenvironment
2.
Arch Biochem Biophys ; 711: 109029, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34517011

ABSTRACT

Because of the critical roles of Toll-like receptors (TLRs) and receptor for advanced glycation end-products (RAGE) in the pathophysiology of various acute and chronic inflammatory diseases, continuous efforts have been made to discover novel therapeutic inhibitors of TLRs and RAGE to treat inflammatory disorders. A recent study by our group has demonstrated that trimebutine, a spasmolytic drug, suppresses the high mobility group box 1‒RAGE signaling that is associated with triggering proinflammatory signaling pathways in macrophages. Our present work showed that trimebutine suppresses interleukin-6 (IL-6) production in lipopolysaccharide (LPS, a stimulant of TLR4)-stimulated macrophages of RAGE-knockout mice. In addition, trimebutine suppresses the LPS-induced production of various proinflammatory cytokines and chemokines in mouse macrophage-like RAW264.7 cells. Importantly, trimebutine suppresses IL-6 production induced by TLR2-and TLR7/8/9 stimulants. Furthermore, trimebutine greatly reduces mortality in a mouse model of LPS-induced sepsis. Studies exploring the action mechanism of trimebutine revealed that it inhibits the LPS-induced activation of IL-1 receptor-associated kinase 1 (IRAK1), and the subsequent activations of extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These findings suggest that trimebutine exerts anti-inflammatory effects on TLR signaling by downregulating IRAK1‒ERK1/2‒JNK pathway and NF-κB activity, thereby indicating the therapeutic potential of trimebutine in inflammatory diseases. Therefore, trimebutine can be a novel anti-inflammatory drug-repositioning candidate and may provide an important scaffold for designing more effective dual anti-inflammatory drugs that target TLR/RAGE signaling.


Subject(s)
Anti-Inflammatory Agents/pharmacology , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Toll-Like Receptors/metabolism , Trimebutine/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Chemokines/metabolism , Female , Interleukin-6/metabolism , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells , Receptor for Advanced Glycation End Products/deficiency , Receptor for Advanced Glycation End Products/genetics , Sepsis/chemically induced , Sepsis/drug therapy , Trimebutine/therapeutic use
3.
Biochem Biophys Res Commun ; 566: 1-8, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34111666

ABSTRACT

Receptor for advanced glycation end-products (RAGE) and Toll-like receptors (TLRs) are potential therapeutic targets in the treatment of acute and chronic inflammatory diseases. We previously reported that trimebutine, a spasmolytic drug, suppresses RAGE pro-inflammatory signaling pathway in macrophages. The aim of this study was to convert trimebutine to a new small molecule using in silico 3D pharmacophore similarity search, and dissect the mechanistic anti-inflammatory basis. Of note, a unique 3-styrylchromone (3SC), 7-methoxy-3-trimethoxy-SC (7M3TMSC), converted from trimebutine 3D pharmacophore potently suppressed both high mobility group box 1-RAGE and lipopolysaccharide-TLR4 signaling pathways in macrophage-like RAW264.7 cells. More importantly, 7M3TMSC inhibited the phosphorylation of extracellular signaling-regulated kinase 1 and 2 (ERK1/2) and downregulated the production of cytokines, such as interleukin-6. Furthermore, 3D pharmacophore-activity relationship analyses revealed that the hydrogen bond acceptors of the trimethoxy groups in a 3-styryl moiety and the 7-methoxy-group in a chromone moiety in this compound are significant in the dual anti-inflammatory activity. Thus, 7M3TMSC may provide an important scaffold for the development of a new type of anti-inflammatory dual effective drugs targeting RAGE/TLR4-ERK1/2 signaling.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chromones/pharmacology , Receptor for Advanced Glycation End Products/metabolism , Toll-Like Receptor 4/metabolism , Trimebutine/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Chromones/chemistry , HMGB1 Protein/metabolism , Humans , Mice , RAW 264.7 Cells , Signal Transduction/drug effects , Trimebutine/chemistry
4.
Medicines (Basel) ; 8(4)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805209

ABSTRACT

Background: High mobility group box 1 (HMGB1)-receptor for advanced glycation endo-products (RAGE) axis serves as a key player in linking inflammation and carcinogenesis. Recently, papaverine was revealed to suppress the HMGB1-RAGE inflammatory signaling pathway and cancer cell proliferation. Therefore, a dual suppressor targeting this axis is expected to become a new type of therapeutic agent to treat cancer. Methods: Papaverine 3D pharmacophore mimetic compounds were selected by the LigandScout software from our in-house, anti-cancer chemical library and assessed for their anti-inflammatory activities by a HMGB1-RAGE-mediated interleukin-6 production assay using macrophage-like RAW264.7 cells. Molecular-biological analyses, such as Western blotting, were performed to clarify the mechanism of action. Results: A unique 6-methoxy-3-hydroxy-styrylchromone was found to possess potent anti-inflammatory and anti-cancer activities via the suppression of the HMGB1-RAGE-extracellular signal-regulated kinase 1/2 signaling pathway. Furthermore, the 3D pharmacophore-activity relationship analyses revealed that the hydroxyl group at the C4' position of the benzene ring in a 3-styryl moiety was significant in its dual suppressive effects. Conclusions: These findings indicated that this compound may provide a valuable scaffold for the development of a new type of anti-cancer drug possessing anti-inflammatory activity and as a tool for understanding the link between inflammation and carcinogenesis.

5.
Molecules ; 25(16)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785052

ABSTRACT

Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic strategy for targeting cancer metabolism. So far, many potent NAMPT inhibitors have been developed and shown to bind to two unique tunnel-shaped cavities existing adjacent to each active site of a NAMPT homodimer. However, cytotoxicities and resistances to NAMPT inhibitors have become apparent. Therefore, there remains an urgent need to develop effective and safe NAMPT inhibitors. Thus, we designed and synthesized two close structural analogues of NAMPT inhibitors, azaindole-piperidine (3a)- and azaindole-piperazine (3b)-motif compounds, which were modified from the well-known NAMPT inhibitor FK866 (1). Notably, 3a displayed considerably stronger enzyme inhibitory activity and cellular potency than did 3b and 1. The main reason for this phenomenon was revealed to be due to apparent electronic repulsion between the replaced nitrogen atom (N1) of piperazine in 3b and the Nδ atom of His191 in NAMPT by our in silico binding mode analyses. Indeed, 3b had a lower binding affinity score than did 3a and 1, although these inhibitors took similar stable chair conformations in the tunnel region. Taken together, these observations indicate that the electrostatic enthalpy potential rather than entropy effects inside the tunnel cavity has a significant impact on the different binding affinity of 3a from that of 3b in the disparate enzymatic and cellular potencies. Thus, it is better to avoid or minimize interactions with His191 in designing further effective NAMPT inhibitors.


Subject(s)
Drug Design , Enzyme Inhibitors/chemistry , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Binding Sites , Catalytic Domain , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Indoles/chemistry , Kinetics , Molecular Docking Simulation , Nicotinamide Phosphoribosyltransferase/metabolism , Piperazine/chemistry , Piperidines/chemistry
6.
Pacing Clin Electrophysiol ; 40(11): 1246-1253, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28862317

ABSTRACT

BACKGROUND: Electrocardiogram abnormalities have been reported during electroconvulsive therapy (ECT). A corrected QT interval (QTc) prolongation indicates delayed ventricular repolarization, which can trigger ventricular arrhythmias such as torsade de pointes (TdP). We examined the QTc changes during generalized tonic-clonic seizures induced by ECT, and the effects of atropine sulfate on these QTc changes. METHODS: We analyzed heart rate, QT interval, and QTc in 32 patients with depression who underwent ECT (25 women, 67.4 ± 8.7 years of age). The QTc from -30 to 0 seconds prestimulation was used as baseline, which was compared with QTc at 20-30 seconds and 140-150 seconds poststimulus onset. RESULTS: QTc was significantly prolonged at 20-30 seconds poststimulus, then significantly decreased at 140-150 seconds poststimulus, compared with baseline. QTc prolongation induced by ECT was significantly decreased by atropine sulfate. CONCLUSIONS: These data suggest that the risk of TdP may be enhanced by ECT. Further, the risk of cardiac ventricular arrhythmias, including TdP, may be reduced by administration of atropine sulfate.


Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Atropine/therapeutic use , Electroconvulsive Therapy/adverse effects , Long QT Syndrome/drug therapy , Aged , Bipolar Disorder/therapy , Depressive Disorder, Major/therapy , Electrocardiography , Electroencephalography , Female , Heart Rate , Humans , Long QT Syndrome/physiopathology , Male , Risk Factors , Seizures/etiology , Treatment Outcome
7.
Nucleic Acid Ther ; 27(1): 36-44, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27827561

ABSTRACT

The obstacles to the development of therapeutic aptamers for systemic inflammatory diseases, such as nuclease degradation and renal clearance, have not been fully overcome. Here, we report a novel PEGylation method, sbC-PEGylation, which improves the pharmacokinetic properties of RNA aptamers that act against interleukin-17A (IL-17A) in mice and monkeys. sbC-PEGylated aptamers were synthesized by coupling the symmetrical branching molecule 2-cyanoethyl-N,N-diisopropyl phosphoroamidite to the 5' end of the aptamer, before conjugating two polyethylene glycol (PEG) molecules to the aptamer. Pharmacokinetic studies showed that compared with conventionally PEGylated aptamers, the sbC-PEGylated aptamer exhibited excellent stability in the blood circulation of mice and monkeys. In addition, one of the sbC-PEGylated aptamers, 17M-382, inhibited the interleukin-6 (IL-6) production induced by IL-17A in NIH3T3 cells in a concentration-dependent manner, and the half-maximal inhibitory concentration of sbC-PEGylated 17M-382 was two times lower than that of non-PEGylated 17M-382. Furthermore, the intraperitoneal administration of sbC-PEGylated 17M-382 significantly inhibited the IL-6 production induced by IL-17A in a mouse air pouch model. Our findings suggest that the novel PEGylation method described in this study, sbC-PEGylation, could be used to develop anti-IL-17A aptamers as a therapeutic option for systemic inflammatory disease.


Subject(s)
Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacokinetics , Interleukin-17/antagonists & inhibitors , Polyethylene Glycols/chemistry , Animals , Blood Chemical Analysis , Humans , Inhibitory Concentration 50 , Injections, Intraperitoneal , Interleukin-17/genetics , Interleukin-6/antagonists & inhibitors , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells
8.
J Immunol ; 183(2): 1480-7, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19561103

ABSTRACT

Shiga toxin has the potential to induce expression of inflammation-associated genes, although the underlying mechanisms are not well understood. We examined the effects of subtilase cytotoxin (SubAB), an AB(5) toxin produced by some Shiga toxigenic Escherichia coli, on the activation of NF-kappaB. SubAB is known to be a protease which selectively degrades GRP78/Bip. Treatment of NRK-52E cells with SubAB caused rapid cleavage of GRP78. Following the degradation of GRP78, transient activation of NF-kappaB was observed with a peak at 6-12 h; the activation subsided within 24 h despite the continuous absence of intact GRP78. The activation of NF-kappaB was preceded by transient phosphorylation of Akt. Treatment of the cells with a selective inhibitor of Akt1/2 or an inhibitor of PI3K attenuated SubAB-induced NF-kappaB activation, suggesting that activation of Akt is an event upstream of NF-kappaB. Degradation of GRP78 caused the unfolded protein response (UPR), and inducers of the UPR mimicked the stimulatory effects of SubAB on Akt and NF-kappaB. SubAB triggered the three major branches of the UPR including the IRE1-XBP1, PERK, and ATF6 pathways. Dominant-negative inhibition of IRE1alpha, XBP1, or PERK did not attenuate activation of NF-kappaB by SubAB. In contrast, genetic and pharmacological inhibition of ATF6 significantly suppressed SubAB-triggered Akt phosphorylation and NF-kappaB activation. These results suggested that loss of GRP78 by SubAB leads to transient phosphorylation of Akt and consequent activation of NF-kappaB through the ATF6 branch of the UPR.


Subject(s)
Activating Transcription Factor 6/metabolism , Endoplasmic Reticulum/pathology , Escherichia coli Proteins/pharmacology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Subtilisins/pharmacology , Animals , Cell Line , Cytotoxins/pharmacology , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Phosphorylation , Protein Folding , Rats
9.
J Immunol ; 182(2): 1182-91, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19124762

ABSTRACT

Acute endoplasmic reticulum (ER) stress causes induction of inflammatory molecules via activation of NF-kappaB. However, we found that, under ER stress conditions, renal mesangial cells acquire anergy to proinflammatory stimuli. Priming of the cells with ER stress inducers (tunicamycin, thapsigargin, A23187, and AB5 subtilase cytotoxin) caused blunted induction of MCP-1 in response to TNF-alpha, IL-1beta, macrophage-derived factors, or bystander macrophages. The magnitude of suppression was closely correlated with the level of GRP78, an endogenous indicator of ER stress. The suppression of MCP-1 under ER stress conditions was reversible and observed in general regardless of cell types or triggers of ER stress. The decrease in the level of MCP-1 mRNA was ascribed to transcriptional suppression via unexpected inhibition of NF-kappaB, but not to accelerated mRNA degradation. Subsequent experiments revealed that TNFR-associated factor 2, an essential component for TNF-alpha signaling, was down-regulated by ER stress. We also found that, under ER stress conditions, expression of NF-kappaB suppressor A20 was induced. Overexpression of A20 resulted in suppression of cytokine-triggered NF-kappaB activation and knockdown of A20 by RNA interference significantly attenuated induction of anergy by ER stress. In contrast, other ER stress-inducible/-related molecules that may suppress NF-kappaB (e.g., GRP78, NO, reactive oxygen species, and IkappaB) were not involved in the inhibitory effects of ER stress. These results elucidated ER stress-dependent mechanisms by which nonimmune cells acquire anergy to inflammatory stimuli under pathological situations. This self-defense machinery may play a role in halting progression of acute inflammation and in its spontaneous subsidence.


Subject(s)
Clonal Anergy , Cytokines/physiology , Endoplasmic Reticulum/pathology , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/physiology , Stress, Physiological , Animals , Cell Line , Cell Line, Transformed , Cell Line, Tumor , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/biosynthesis , Chemokines/biosynthesis , Chemokines/genetics , Clonal Anergy/immunology , Coculture Techniques , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Kidney Glomerulus/drug effects , Kidney Glomerulus/immunology , Kidney Glomerulus/metabolism , Macrophages/drug effects , Macrophages/immunology , Mesangial Cells/drug effects , Mesangial Cells/immunology , Mesangial Cells/metabolism , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/physiology , Rats , Stress, Physiological/drug effects , Stress, Physiological/immunology , Thapsigargin/pharmacology
10.
J Infect Chemother ; 13(6): 390-5, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18095087

ABSTRACT

HMRZ-86 was designed as a new chromogenic cephalosporin to detect extended-spectrum beta-lactamases (ESBLs) and similar evolved beta-lactamases, such as metallo-beta-lactamases, derepressed AmpC, and extended oxacillinase. We report here our investigation of the kinetic parameters of several types of beta-lactamases to show the enzymatic characteristics of HMRZ-86. The Michaelis constant (Km values of HMRZ-86 for ESBLs were twice to three and half times as high as those of nitrocefin, and the maximum velocity (Vmax) was one-fifth that of nitrocefin. The Km and Vmax of HMRZ-86 for AmpC were both smaller than those of nitrocefin. The kinetic parameters of HMRZ-86 for metallo beta-lactamase (MBL) were very variable, depending on the type of buffer solution used and the concentration of zinc ions. For MBL, the Km values of HMRZ-86 were higher than those of nitrocefin, but the Vmax values were almost the same as those of nitrocefin. Although the chemical structure of HMRZ-86 is similar to that of nitrocefin, we think the enzymatic reactivities of the two entities for beta-lactamases are very different.


Subject(s)
Anti-Bacterial Agents/metabolism , Cephalosporins/metabolism , beta-Lactamases/metabolism , Anti-Bacterial Agents/chemistry , Cephalosporins/chemistry , Gram-Negative Bacteria/enzymology , Humans , Kinetics , Substrate Specificity , beta-Lactamases/chemistry , beta-Lactamases/isolation & purification
11.
J Antibiot (Tokyo) ; 58(1): 69-73, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15813184

ABSTRACT

We synthesized 7-substituted-3-(2,4-dinitrostyryl)cephalosporin derivatives which were Nitrocefin analogs, for detecting extended spectrum beta-lactamase (ESBL) specifically. HMRZ-86 which has carboxypropyloxyimino group on 7-aminothiazolacetamide substituent were not hydrolyzed by class A, C and D beta-lactamases, but it was hydrolyzed by ESBL and metallo beta-lactamase (class B), then its color changed from yellow to red. The hydrolysis of metallo beta-lactamase was inhibited by adding sodium mercapto acetic acid (SMA). Therefore HMRZ-86 is a useful chromogenic agent to detect ESBL specifically.


Subject(s)
Cephalosporins/chemical synthesis , beta-Lactamases/drug effects , Cephalosporins/chemistry , Cephalosporins/pharmacology , Color , Hydrolysis/drug effects , Microbial Sensitivity Tests , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...