Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Exp Bot ; 65(17): 4795-806, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24913626

ABSTRACT

Internal aeration is crucial for root growth in waterlogged soil. A barrier to radial oxygen loss (ROL) can enhance long-distance oxygen transport via the aerenchyma to the root tip; a higher oxygen concentration at the apex enables root growth into anoxic soil. The ROL barrier is formed within the outer part of roots (OPR). Suberin and/or lignin deposited in cell walls are thought to contribute to the barrier, but it is unclear which compound is the main constituent. This study describes gene expression profiles during ROL barrier formation in rice roots to determine the relative responses of suberin and/or lignin biosyntheses for the barrier. OPR tissues were isolated by laser microdissection and their transcripts were analysed by microarray. A total of 128 genes were significantly up- or downregulated in the OPR during the barrier formation. Genes associated with suberin biosynthesis were strongly upregulated, whereas genes associated with lignin biosynthesis were not. By an ab initio analysis of the promoters of the upregulated genes, the putative cis-elements that could be associated with transcription factors, WRKY, AP2/ERF, NAC, bZIP, MYB, CBT/DREB, and MADS, were elucidated. They were particularly associated with the expression of transcription factor genes containing WRKY, AP2, and MYB domains. A semiquantitative reverse-transcription PCR analysis of genes associated with suberin biosynthesis (WRKY, CYP, and GPAT) confirmed that they were highly expressed during ROL barrier formation. Overall, these results suggest that suberin is a major constituent of the ROL barrier in roots of rice.


Subject(s)
Lignin/metabolism , Lipids/biosynthesis , Oryza/metabolism , Oxygen/metabolism , Cell Wall/metabolism , Microdissection , Oligonucleotide Array Sequence Analysis , Oryza/cytology , Oryza/genetics , Plant Roots/cytology , Plant Roots/metabolism
2.
Ann Bot ; 107(1): 89-99, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21097947

ABSTRACT

BACKGROUND AND AIMS: Many wetland species form aerenchyma and a barrier to radial O(2) loss (ROL) in roots. These features enhance internal O(2) diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early anatomical changes was lacking. METHODS: ROL barrier induction in short and long roots of rice (Oryza sativa L. 'Nipponbare') was assessed using cylindrical root-sleeving O(2) electrodes and methylene blue indicator dye for O(2) leakage. Aerenchyma formation was also monitored in root cross-sections. Microstructure of hypodermal/exodermal layers was observed by transmission electron microscopy (TEM). KEY RESULTS: In stagnant medium, barrier to ROL formation commenced in long adventitious roots within a few hours and the barrier was well formed within 24 h. By contrast, barrier formation took longer than 48 h in short roots. The timing of enhancement of aerenchyma formation was the same in short and long roots. Comparison of ROL data and subsequent methylene blue staining determined the apparent ROL threshold for the dye method, and the dye method confirmed that barrier induction was faster for long roots than for short roots. Barrier formation might be related to deposition of new electron-dense materials in the cell walls at the peripheral side of the exodermis. Histochemical staining indicated suberin depositions were enhanced prior to increases in lignin. CONCLUSIONS: As root length affected formation of the barrier to ROL, but not aerenchyma, these two acclimations are differentially regulated in roots of rice. Moreover, ROL barrier induction occurred before histochemically detectable changes in putative suberin and lignin deposits could be seen, whereas TEM showed deposition of new electron-dense materials in exodermal cell walls, so structural changes required for barrier functioning appear to be more subtle than previously described.


Subject(s)
Oryza/metabolism , Oxygen/metabolism , Lignin/metabolism , Lipids , Oryza/anatomy & histology , Plant Roots/anatomy & histology , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...