Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 1261, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218992

ABSTRACT

We previously demonstrated that neutral bicarbonate ionized water (NBIW) bathing enhances blood flow by bicarbonate ions and described the underlying mechanism. However, additional clinical investigation was warranted to investigate the efficacy of NBIW bathing. Hence, we performed a randomized, open-label, crossover trial to examine the effects of NBIW bathing on mental stress, sleep, and immune function. Participants who regularly felt stressed were randomly assigned to NBIW or regular bathing for 4 weeks. Mental stress was assessed with the Brief Job Stress Questionnaire (BJSQ) and the Profile of Mood States Second Edition; sleep quality, with the Pittsburgh Sleep Quality Index Japanese version (PSQI-J) and actigraphy; and immune function, with laboratory tests. PSQI-J scores and actigraphy sleep latency and bed out latency improved significantly more with NBIW bathing than with regular bathing (p < 0.05). Furthermore, NBIW bathing reduced both stress-induced fluctuations in CD4+ and CD8+ T cell counts and fluctuations in the naive to memory T cell ratio and neutrophil phagocytosis, indicating improved immune function. These findings suggest that daily NBIW bathing could improve mental stress, sleep quality, and immune function and bring about positive health effects in those who experience stress in their daily lives.


Subject(s)
Baths , Bicarbonates , Humans , Cross-Over Studies , Sleep/physiology , Water
2.
J Clin Biochem Nutr ; 72(2): 171-182, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36936876

ABSTRACT

This study examined the bioactivities and mechanisms of the non-centrifugal cane sugar polyphenols saponarin, schaftoside, and isoschaftoside in the salivary gland and their effects on salivation. In acute isolated C57BL/6N mouse submandibular gland cells, these polyphenols led to a higher increase in intracellular calcium after stimulation with the muscarinic agonist carbachol. Stimulation of these cells with polyphenols enhanced ATP production, aquaporin-5 translocation to the plasma membrane and eliminated intracellular reactive oxygen species generated by H2O2. In addition, phosphorylation of endothelial nitric oxide synthase and increased nitric oxide production in vascular endothelial cells were observed. In vivo administration of these polyphenols to C57BL/6N male mice resulted in significantly increased blood flow (saponarin, p = 0.040; isoschaftoside, p = 0.010) and salivation (saponarin, p = 0.031). A randomized controlled trial showed that intake of non-centrifugal cane sugar significantly increased saliva secretion compared with placebo (p = 0.003). These data suggest that non-centrifugal cane sugar polyphenols affect several pathways that support salivation and increase saliva secretion by enhancing vasodilation. Hence, non-centrifugal cane sugar polyphenols can be expected to maintain saliva secretion and improve reduced saliva flow.

3.
Sci Rep ; 11(1): 21789, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750450

ABSTRACT

Percutaneously absorbed carbon dioxide enhances blood flow. The mechanism by which it does so is unclear, but we hypothesized that it involves bicarbonate ions. BALB/c mice were bathed in neutral bicarbonate ionized water (NBIW) and showed increased blood bicarbonate levels and blood flow via phosphorylation of peripheral vascular endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO). Phosphorylation of eNOS and NO production were also increased in human umbilical vein endothelial cells cultured in medium containing NBIW, and NBIW showed reactive oxygen species scavenging activity. In a double-blind, randomized study in men and women aged 30 to 59 years with subjective cold intolerance, bathing in NBIW elevated body temperature faster than bathing in a control solution and improved chills and sleep quality. Taken together, our results show that percutaneously absorbed carbon dioxide changes to bicarbonate ions, which act directly on endothelial cells to increase NO production by phosphorylation of eNOS and thus improve blood flow.


Subject(s)
Bicarbonates/pharmacology , Blood Circulation/drug effects , Immersion , Adult , Animals , Bicarbonates/pharmacokinetics , Body Temperature/drug effects , Double-Blind Method , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred BALB C , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Reactive Oxygen Species/metabolism
4.
Pathobiology ; 88(3): 234-241, 2021.
Article in English | MEDLINE | ID: mdl-33556940

ABSTRACT

INTRODUCTION: Type-2 diabetes mellitus (T2DM) is associated with several systemic vascular symptoms and xerostomia. It is considered that hyperglycemia-induced polyuria and dehydration cause decreased body-water volume, leading to decreased saliva secretion and, ultimately, xerostomia. In T2DM, increased production of reactive oxygen species (ROS) causes tissue damage to vascular endothelial cells as well as epithelial tissue, including pancreas and cornea. Hence, a similar phenomenon may occur in other tissues and glands in a hyperglycemic environment. METHODS: Salivary gland tissue injury was examined, using T2DM model mouse (db/db). Transferase-mediated dUTP nick-end labeling (TUNEL) was conducted to evaluate tissue injury. The levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine, Bax/Bcl-2 ratio were measured as indicator of oxidative stress. Moreover, in vitro ROS production and cell injury was evaluated by mouse salivary gland-derived normal cells under high-glucose condition culture. RESULTS: In vivo and in vitro analysis showed a higher percentage of TUNEL-positive cells and higher levels of MDA and 8-hydroxy-2'-deoxyguanosine in salivary gland tissue of db/db mice. This suggests damage of saliva secretion-associated lipids and DNA by hyperglycemic-induced oxidative stress. To analyze the mechanism by which hyperglycemia promotes ROS production, mouse salivary gland-derived cells were isolated. The cell culture with high-glucose medium enhanced ROS production and promotes apoptotic and necrotic cell death. CONCLUSION: These findings suggest a novel mechanism whereby hyperglycemic-induced ROS production promotes salivary gland injury, resulting in hyposalivation.


Subject(s)
Apoptosis , Hyperglycemia/complications , Reactive Oxygen Species/metabolism , Salivary Glands/cytology , Salivary Glands/pathology , Animals , Cell Culture Techniques , Culture Media/chemistry , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/complications , Disease Models, Animal , Glucose/metabolism , Mice , Oxidative Stress
5.
J Clin Biochem Nutr ; 65(3): 245-251, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31777427

ABSTRACT

Calcitriol [1,25(OH)2D3] is usually investigated in studies on the preventive effect of activated vitamin D against interstitial pneumonia. Although cholecalciferol (vitamin D3) can be easily obtained in the diet and has a longer half-life than calcitriol, there have been few investigations of its effect on interstitial pneumonia. We used human pulmonary fibroblast cell lines (HPFCs) and a mouse model of bleomycin-induced pulmonary fibrosis to evaluate whether vitamin D3 was activated in the lungs and had a preventive effect against interstitial pneumonia. Expression of the vitamin D receptor gene and genes for enzymes metabolizing vitamin D was evaluated in two HPFCs, and the suppressive effect of vitamin D3 on induction of inflammatory cytokines was also assessed. Gene expression of the vitamin D receptor and vitamin D-metabolizing enzymes was observed in both human pulmonary fibroblast cell lines. Vitamin D3 suppressed bleomycin-induced expression of inflammatory cytokines and fibrosis markers by the HPFCs. In mice, symptoms of bleomycin-induced pulmonary fibrosis were improved and expression of fibrosis markers/fibrosis inducers was decreased by a high vitamin D3 diet. Vitamin D3 is activated locally in lung tissues, suggesting that high dietary intake of vitamin D3 may have a preventive effect against interstitial pneumonia.

6.
PLoS One ; 14(4): e0214495, 2019.
Article in English | MEDLINE | ID: mdl-30943227

ABSTRACT

A randomized, double-blind, placebo-controlled, parallel-group comparative clinical study was conducted to examine the effects of ubiquinol (the reduced form of Coenzyme Q10) on secretion of saliva. This interventional study enrolled 40 subjects aged 65 years or younger who were healthy, but noted slight dryness of the mouth. Subjects were randomized with stratification according to gender and age to ingestion of gummy candy containing 50 mg of ubiquinol or placebo twice daily for 8 weeks. At the end of study, along with a significant increase of the CoQ10 level in saliva (p = 0.025*, d = 0.65), there was a significant increase of the saliva flow rate (p = 0.048*, d = 0.66) in the ubiquinol candy group (n = 18; 47.4±6.2 years; 6 men and 12 women) compared to the placebo group (n = 20; 52.2±7.7 years; 4 men and 16 women). The strength of the stomatognathic muscles was not significantly enhanced by ingestion of ubiquinol candy. Compared with baseline, significant improvement of the following four questionnaire items was observed in the ubiquinol group at the end of the study: feeling tired (p = 0.00506, d = -0.726), dryness of the mouth (p = 0.04799, d = -0.648), prone to catching a cold (p = 0.00577, d = -0.963), and diarrhea (p = 0.0166, d = -0.855). There were no serious adverse events. An in vitro study revealed that ubiquinol stimulated a significant and concentration-dependent increase of ATP production by a cell line derived from human salivary gland epithelial cells (p<0.05), while 1 nM ubiquinol significantly suppressed (p = 0.028) generation of malondialdehyde by cells exposed to FeSO4-induced oxidative stress. These findings suggest that ubiquinol increases secretion of saliva by suppressing oxidative stress in the salivary glands and by promoting ATP production. Trial Registration: UMIN-CTR UMIN000024406.


Subject(s)
Adenosine Triphosphate/metabolism , Candy , Saliva/metabolism , Ubiquinone/analogs & derivatives , Adult , Antioxidants/metabolism , Cell Line , Deglutition , Double-Blind Method , Female , Humans , Japan , Male , Malondialdehyde/metabolism , Middle Aged , Oxidative Stress , Salivary Glands/physiology , Surveys and Questionnaires , Ubiquinone/metabolism , Ubiquinone/pharmacology
7.
Int J Cardiol Heart Vasc ; 19: 34-36, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29946561

ABSTRACT

BACKGROUND: The aims of the present study were to determine the effects of an ultrasound irradiation on clinic hypertension and the heart rate variability in elderly hypertensive subjects with type 2 diabetes. METHODS: We examined the effects of ultrasound (800 kHz, 25 mW/cm2) applied to the forearm for 10 min on the autonomic nerve activity and the difference between BP at home and at a clinic visit in Japanese subjects with type 2 diabetes and hypertension. RESULTS: In 108 subjects who displayed systolic BP (SBP) >140 mm Hg at a clinic visit, 75 subjects (69%) had a mean SBP <135 mm Hg at home and 33 subjects (31%) had a mean SBP >135 mm Hg at home in the morning for 14 days. SBP, pulse rate, and pulse pressure in the ultrasound treatment group were significantly lower than the baseline values in these hypertensive subjects with type 2 diabetes, and lower than those of placebo controls independently of SBP at home. In 31 subjects who displayed systolic BP >140 mm Hg at a clinic, standard deviation of all RR intervals and the root mean square of successive differences were significantly higher in the ultrasound treatment group than the baseline values in these hypertensive subjects with type 2 diabetes, and lower than those of placebo controls. CONCLUSIONS: The ultrasound treatment increases the cardiac parasympathetic neural activity and decreases the differences between SBP at home and at a clinic visit in elderly hypertensive subjects with type 2 diabetes.

8.
Int J Cardiol Heart Vasc ; 16: 4-6, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28868339

ABSTRACT

OBJECTIVES: The arterial pressure-volume index (API) is a non-invasive assessment of arterial stiffness, and is suggested as a useful predictor of future cardiovascular events. The aim of the present study was to determine the effects of low-frequency and low-intensity ultrasound applied to the forearm for 10 min on the API in Japanese subjects with type 2 diabetes and hypertension. METHODS: We examined the effects of low-frequency and low-intensity ultrasound (800 kHz, 25 mW/cm2) applied to the forearm for 10 min on the API, blood pressure (BP) and pulse rate in 40 Japanese subjects (13 men and 27 women; mean age ± SE, 70 ± 2 years) with type 2 diabetes and hypertension, who had the API > 30 and systolic BP > 140 mmHg at a clinic visit. We also examined the effects of the ultrasound irradiation for 10 min on the API, BP and pulse rate in 33 Japanese subjects (11 men and 22 women; mean age ± SE, 65 ± 2 years) with type 2 diabetes and hypertension, who had the API > 30 and systolic BP (SBP) < 140 mmHg. RESULTS: The API, systolic BP and pulse rate in the ultrasound treatment group was significantly lower than the baseline values in the subjects who had the API > 30 and either the baseline of systolic BP > 140 mmHg or systolic BP < 140 mmHg. CONCLUSIONS: The low-frequency and low-intensity ultrasound irradiation to the forearm for 10 min might be useful as a preventive application for arterial stiffness in subjects with type 2 diabetes and hypertension.

9.
Int J Cardiol ; 215: 147-9, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27111181

ABSTRACT

BACKGROUND: Despite lifestyle interventions and various types of anti-hypertension agents, hypertension remains difficult to control in some patients with type 2 diabetes. As a noninvasive device-based approach for the treatment of clinic hypertension, we examined the effects of low-frequency and low-intensity ultrasound (500 or 800kHz, 25mW/cm(2)) applied to the forearm on blood pressure (BP) and pulse rate in Japanese subjects with type 2 diabetes and hypertension. METHODS: We examined the effects of low-frequency and low-intensity ultrasound (500 or 800kHz, 25mW/cm(2)) applied to the forearm on BP, pulse rate, and pulse pressure in 212 Japanese subjects (82 men and 130 women; mean age±SE, 65±1years) with type 2 diabetes and hypertension (systolic BP>140mmHg). The subjects were treated with anti-hypertension agents. RESULTS: Systolic and diastolic BP, pulse rate, pulse pressure in the 800-kHz ultrasound treatment group were significantly lower than the baseline values in hypertensive subjects with type 2 diabetes, and lower than those of placebo controls. In addition, systolic and diastolic BP, pulse rate, and pulse pressure in the 500-kHz ultrasound treatment group were significantly lower than the baseline values in hypertensive subjects with type 2 diabetes, and systolic BP, pulse rate, and pulse pressure were significantly lower than those of placebo controls. CONCLUSIONS: Low-frequency (800kHz or 500kHz) and low-intensity (25mW/cm(2)) ultrasound irradiation to the forearm might have potential usefulness as a therapeutic application for clinic hypertension in subjects with type 2 diabetes.


Subject(s)
Blood Pressure/physiology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/therapy , Hypertension/epidemiology , Hypertension/therapy , Ultrasonic Therapy/methods , Aged , Diabetes Mellitus, Type 2/diagnosis , Female , Humans , Hypertension/diagnosis , Male , Middle Aged , Ultrasonic Waves
10.
Neurosci Lett ; 612: 14-17, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26683903

ABSTRACT

Fibroblast growth factor 21 (FGF21) functions as an endocrine hormone to regulate energy metabolism. Circulating FGF21 is derived from the liver and is produced in response to alterations of nutritional status. Here we show the effects of liraglutide, a human glucagon-like-peptide-1 (GLP-1) receptor agonist, injected into the third cerebral ventricle on body weight and plasma FGF21 levels in free-feeding mice, food-deprived mice, and mice provided 1g after the injection. In free-feeding mice, liraglutide (5-100µg/kg) injected into the third cerebral ventricle suppressed food intake and body weight after 24h in a dose-dependent manner. Liraglutide (50 and 100µg/kg) significantly increased plasma FGF21 levels and hepatic FGF21 expression, whereas smaller doses (5 and 10µg/kg) had no effect. In food-deprived mice, body weight did not differ significantly between the saline control and liraglutide-treated groups, but liraglutide (100µg/kg) significantly decreased plasma FGF21 levels at 24h compared with the saline control. In mice provided 1g food, body weight did not differ significantly between the saline control and liraglutide-treated groups, but liraglutide (50µg/kg) significantly decreased plasma FGF21 levels at 24h compared with the saline control. These findings suggest that intracerebral injection of liraglutide decreases body weight by inhibiting food intake and increases plasma FGF21 levels in free-feeding mice, whereas it suppresses the elevations of plasma FGF21 levels induced by fasting or the restricted feeding. Thus, pharmacologic stimulation of central GLP-1 receptors has opposite effects on the alterations of plasma FGF21 levels induced by feeding and fasting.


Subject(s)
Eating , Fibroblast Growth Factors/blood , Food Deprivation , Glucagon-Like Peptide-1 Receptor/agonists , Liraglutide/pharmacology , Animals , Body Weight/drug effects , Eating/drug effects , Fibroblast Growth Factors/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Injections, Intraventricular , Liver/metabolism , Male , Mice, Inbred C57BL
11.
Biochem Biophys Res Commun ; 464(2): 674-7, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26187667

ABSTRACT

Fibroblast growth factor (FGF) 21 is a mediator of glucose and lipid metabolism. Although exogenous administration of FGF21 exerts beneficial effects on glucose and lipid metabolism, circulating FGF21 levels are elevated in ob/ob and db/db mice, diet-induced obese mice and obese human. Here we show that ingestion of eicosapentaenoic acid (EPA) for 6 days after individually-housing significantly suppressed the hyperglycemia and hypertriglyceridemia associated with decreases in plasma insulin and FGF21 levels in KKA(y) mice while having no effects on food intake, body weight or plasma active GLP-1 levels. The ingestion of EPA had no significant effects on the expression of FGF21 in the liver, epididymal white adipose tissue and skeletal muscle. Moreover, the ingestion of EPA significantly decreased the expression of hepatic peroxisome sterol regulatory element-binding protein (SREBP1c), carbohydrate response element-binding protein (ChREBP), stearoyl-CoA deaturase and periostin, which are involved in hepatic lipogenesis and hepatosteaotosis, in KKA(y) mice. On the other hand, the ingestion of EPA had no significant effects on expression of hepatic gp78, Notch, forkhead box protein O1 or glucose-6-phosphatase. These findings suggest that EPA ingestion in the early stage of social isolation suppresses hyperglycemia and hypertriglyceridemia associated with reduced FGF21 and insulin resistance without altering food intake and body weight, and that the EPA ingestion suppresses hepatic lipogenesis by suppressing Notch- and gp78-independent SEREBP1c and ChREBP pathways in KKA(y) mice.


Subject(s)
Body Weight , Eicosapentaenoic Acid/administration & dosage , Fibroblast Growth Factors/metabolism , Social Isolation , Animals , Blood Glucose/analysis , Eicosapentaenoic Acid/pharmacology , Feeding Behavior/drug effects , Fibroblast Growth Factors/blood , Gene Expression Regulation/drug effects , Glucagon-Like Peptide 1/blood , Insulin/blood , Male , Mice , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...