Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399854

ABSTRACT

Green and sustainable power sources for next-generation electronics are being developed. A cellulose paper-based triboelectric nanogenerator (TENG) was fabricated to harness mechanical energy and convert it into electricity. This work proposes a novel approach to modify cellulose paper with natural dyes, including chlorophyll from spinach, anthocyanin from red cabbage, and curcumin from turmeric, to enhance the power output of a TENG. All the natural dyes are found to effectively improve the energy conversion performance of a cellulose paper-based TENG due to their photogenerated charges. The highest power density of 3.3 W/m2 is achieved from the cellulose paper-based TENG modified with chlorophyll, which is higher than those modified with anthocyanin and curcumin, respectively. The superior performance is attributed not only to the photosensitizer properties but also the molecular structure of the dye that promotes the electron-donating properties of cellulose.

2.
Polymers (Basel) ; 15(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904535

ABSTRACT

The triboelectric nanogenerator (TENG) is a newly developed energy harvesting technology that can convert mechanical energy into electricity. The TENG has received extensive attention due to its potential applications in diverse fields. In this work, a natural based triboelectric material has been developed from a natural rubber (NR) filled with cellulose fiber (CF) and Ag nanoparticles. Ag nanoparticles are incorporated into cellulose fiber (CF@Ag) and are used as a hybrid filler material for the NR composite to enhance the energy conversion efficiency of TENG. The presence of Ag nanoparticles in the NR-CF@Ag composite is found to improve the electrical power output of the TENG by promoting the electron donating ability of the cellulose filler, resulting in the higher positive tribo-polarity of NR. The NR-CF@Ag TENG shows significant improvement in the output power up to five folds compared to the pristine NR TENG. The findings of this work show a great potential for the development of a biodegradable and sustainable power source by converting mechanical energy into electricity.

3.
Polymers (Basel) ; 15(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36616444

ABSTRACT

Cellulose-based materials have recently drawn much interest due to their sustainability, biodegradability, biocompatibility, and low cost. In this present work, cellulose fiber paper (CFP) was fabricated from sugarcane leaves and used as a friction material for a triboelectric nanogenerator (TENG). Fe3O4 was incorporated to CFP triboelectric material to increase the dielectric constant of CFP for boosting power generation of TENG. The Fe3O4 filled CFP was synthesized using a facile one-pot co-precipitation technique. The effect of Fe3O4 content in CFP on dielectric property and TENG performance was investigated and optimized. The CFP filled with Fe3O4 nanoparticles exhibited the improved dielectric constant and possessed a superior TENG performance than pristine CF. The highest power density of 1.9 W/m2 was achieved, which was able to charge commercial capacitors serving as a power source for small electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...