Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37628124

ABSTRACT

The roller milling of sorghum and quinoa seeds into flour fractions (coarse, middle, and fine) was investigated, chemically analysed, and applied in the baking of gluten-free sourdough bread. The gap settings were adjusted to 0, 5, 8, and 10 for quinoa, and 3, 5, and 7 for sorghum. The fine fractions reached values of up to about 41% (gap 8) for quinoa and around 20% for sorghum (gap 5). SEM pictographs illustrated the clear separation of each fraction with the chemical analysis showing high contents of protein, TDF (total dietary fibre), and IDF (insoluble dietary fibre) in the coarse fraction. Up to 77% starch content was obtained in the fine fraction with significant amounts of SDF (soluble dietary fibre), which has good health benefits. Increasing the dough moisture up to 90% helped in decreasing the bread crumb firmness, while low Avrami parameters and RVA pasting behaviour indicated a slow bread-staling rate for both sourdough breads.

2.
Bioresour Technol ; 203: 252-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26735880

ABSTRACT

Pilot-scale steam explosion equipments were designed and constructed, to experimentally solubilize xylose from oil palm empty fruit bunches (OPEFB) and also to enhance an enzyme accessibility of the residual cellulose pulp. The OPEFB was chemically pretreated prior to steam explosion at saturated steam (SS) and superheated steam (SHS) conditions. The acid pretreated OPEFB gave the highest xylose recovery of 87.58 ± 0.21 g/kg dried OPEFB in the liquid fraction after explosion at SHS condition. These conditions also gave the residual cellulose pulp with high enzymatic accessibility of 73.54 ± 0.41%, which is approximately threefold that of untreated OPEFB. This study has shown that the acid pretreatment prior to SHS explosion is an effective method to enhance both xylose extraction and enzyme accessibility of the exploded OPEFB. Moreover, the xylose solution obtained in this manner could directly be fermented by Candida shehatae TISTR 5843 giving high ethanol yield of 0.30 ± 0.08 g/g xylose.


Subject(s)
Arecaceae/chemistry , Ethanol/metabolism , Explosions , Steam , Xylose/chemistry , Candida/metabolism , Fermentation , Fruit/chemistry , Pilot Projects , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...