Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Parasitol Res ; 2021: 5386575, 2021.
Article in English | MEDLINE | ID: mdl-34527372

ABSTRACT

Previous studies have reported interactions between Salmonella spp. and some helminth coinfections. In this study, S. typhimurium and Ascaridia galli coinfections were analyzed, and the consequences on therapy were proposed. In a first experiment where the effect of the bacteria on the nematode was evaluated, thirty 42-day-old broiler chickens were divided into 3 groups and coinfected with both parasites. The rate of A. galli egg inoculum was kept constant at 500/ml while that of S. typhimurium varied as follows: T0 (500 A. galli eggs/ml), T104 (500 A. galli eggs/ml+104 S. typhimurium CFUs), and T106 (500 A. galli eggs/ml +106 S. typhymurium CFUs). EPG and parasitic load were measured using the McMaster technic, and number of worms and their length were also measured. We observed that T106 containing 106 CFUs of Salmonella significantly reduced the EPG values, and this group recorded the lowest worm load ranging from 18 to 21 worms. Likewise, the length of the worms obtained with T104 and T106 appeared to be shorter than those of the control (T0). In a second experiment to assess the effects of the nematode on the bacteria, thirty 42-day-old broiler chickens were divided into 3 groups and coinfected with both parasites. The rate of S. typhimurium inoculum was kept constant at 106 CFUs while that of A. galli varied as follows: T0 (106CFUs), T500 (500 A. galli eggs/ml +106 S. typhymurium CFUs), and T750 (750 A. galli eggs/ml +106 S. typhymurium CFUs). Bacterial load was measured using Voogt technique. We observed that T500 increased the colonization time and prolonged the duration of S. typhimurium secretion. Salmonella appears to be a hyperparasite considering the deleterious effect on A. galli. Due to this, it may be prudent to combine anti-Salmonella treatment with anthelmintic so as to effectively treat pathologies caused by these two pathogens.

2.
Ecotoxicology ; 24(9): 1915-22, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26362569

ABSTRACT

Many microbiotests that have been proposed for use in the risk assessment of environmental pollutants have the drawback of lacking relevant published data on various aspects of their test application possibilities and therefore do not receive the regulatory recognition which they may deserve. The MARA bioassay lacks published data for many relevant environmental pollutants, particularly pesticides and this may limit its use in regulatory framework. The present study has assessed the sensitivity of the MARA bioassay relative to other established bioassays (Daphnia magna and Oreochromis niloticus) to two widely used herbicide formulations: Roundup (having glyphosate as active ingredient) and Herbextra (with the active ingredient being 2,4-dichlorophenoxyacetic acid-2,4-D). Roundup was found to be more toxic than Herbextra in all three bioassays. The D. magna EC50 s obtained for Roundup and Herbextra were respectively 5.55 and 356.61 mg/l while the LC50 s for O. niloticus were 11.30 and 222,28 mg/l respectively. In the case of the MARA bioassay microbial toxic concentrations (MTCs) for individual species ranged from 6.85 to 468 mg/l with an overall mean MTC of 101.82 mg/l for glyphosate and from 74.67 to 13,333 mg/l for 2,4-D giving an overall mean MTC of 2855.88 mg/l. Although the overall MTCs from the MARA bioassay were much higher than the LC50 s and EC50 s from the fish and daphnia bioassays respectively, the most sensitive MARA organism for each of the herbicides had MTCs that were comparable to or lower than the corresponding endpoints from the other bioassays implying that the MARA assay is a potentially useful bioassay for risk assessment of pesticides.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Glycine/analogs & derivatives , Herbicides/toxicity , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Animals , Bacteria/drug effects , Cichlids/metabolism , Daphnia/metabolism , Dose-Response Relationship, Drug , Glycine/toxicity , Pichia/drug effects , Risk Assessment , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...