Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(12): eabm6063, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35319980

ABSTRACT

The mechanisms underlying memory loss associated with Alzheimer's disease and related dementias (ADRD) remain unclear, and no effective treatments exist. Fundamental studies have shown that a set of transcriptional regulatory proteins of the nuclear receptor 4a (Nr4a) family serve as molecular switches for long-term memory. Here, we show that Nr4a proteins regulate the transcription of genes encoding chaperones that localize to the endoplasmic reticulum (ER). These chaperones fold and traffic plasticity-related proteins to the cell surface during long-lasting forms of synaptic plasticity and memory. Dysregulation of Nr4a transcription factors and ER chaperones is linked to ADRD, and overexpressing Nr4a1 or the chaperone Hspa5 ameliorates long-term memory deficits in a tau-based mouse model of ADRD, pointing toward innovative therapeutic approaches for treating memory loss. Our findings establish a unique molecular concept underlying long-term memory and provide insights into the mechanistic basis of cognitive deficits in dementia.

2.
Neurobiol Aging ; 85: 140-144, 2020 01.
Article in English | MEDLINE | ID: mdl-31732218

ABSTRACT

Age-associated cognitive impairments affect an individual's quality of life and are a growing problem in society. Therefore, therapeutic strategies to treat age-related cognitive decline are needed to enhance the quality of life among the elderly. Activation of the Nr4a family of transcription factors has been closely linked to memory formation and dysregulation of these transcription factors is thought to be associated with age-related cognitive decline. Previously, we have shown that Nr4a transcription can be activated by synthetic bisindole-derived compounds (C-DIM). C-DIM compounds enhance synaptic plasticity and long-term contextual fear memory in young healthy mice. In this study, we show that activation of Nr4a2 by 1,1-bis(3'-Indolyl)-1-(p-chlorophenyl) methane (C-DIM12), enhances long-term spatial memory in young mice and rescues memory deficits in aged mice. These findings suggest that C-DIM activators of Nr4a transcription may be suitable to prevent memory deficits associated with aging.


Subject(s)
Cognitive Aging , Indoles/pharmacology , Memory Disorders/etiology , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Aging , Animals , Male , Memory Disorders/genetics , Mice, Inbred C57BL , Spatial Memory/drug effects , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...