Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
1.
Mol Biochem Parasitol ; : 111630, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795969

ABSTRACT

Toxoplasma gondii is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in Toxoplasma gondii control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with Toxoplasma gondii SRS29C as the target gene. We explored the nucleic acid vaccine with Toxoplasma surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against Toxoplasma gondii. To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4+ and CD8+ T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4+/CD8+ T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed Toxoplasma gondii nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to develop certain humoral and cellular immune responses, and enhance their ability to resist Toxoplasma gondii infection.

2.
Regen Ther ; 26: 42-49, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38818480

ABSTRACT

Background: Congenital pseudarthrosis of the tibia (CPT) is a dominant health challenge in pediatric orthopedics. The essential process in the development of CPT is the limited capacity of mesenchymal stem cells (MSCs) derived from CPT to undergo osteogenic differentiation. Our research aimed to elucidate the role and mechanism of methyltransferase-like 3 (METTL3) in the osteogenic differentiation process of CPT MSCs. Methods: The osteogenic differentiation medium was used to culture MSCs, and the detection of osteogenic differentiation was performed using Alizarin Red S and alkaline phosphatase (ALP) assays. Gene or protein expression was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, or immunofluorescence (IF) staining. The m6A modification of Homeobox D8 (HOXD8) was verified by methylated RNA immunoprecipitation (MeRIP) assay. Interactions between METTL3 and HOXD8 or HOXD8 and integrin alpha 5 (ITGA5) promoter were validated by the luciferase reporter gene, RIP, and chromatin immunoprecipitation (ChIP) assays. Results: METTL3 overexpression enhanced CPT MSCs' osteogenic differentiation. METTL3 stabilized the HOXD8 in an m6A-dependent manner. Moreover, the overexpressed ITGA5 up-regulated the CPT MSCs' osteogenic differentiation. Further, HOXD8 could transcriptionally activate ITGA5. METTL3 increased the transcription of ITGA5 via HOXD8 to enhance the osteogenic differentiation of CPT MSCs. Conclusion: METTL3 promoted osteogenic differentiation via modulating the HOXD8/ITGA5 axis in CPT MSCs.

3.
Front Microbiol ; 15: 1367658, 2024.
Article in English | MEDLINE | ID: mdl-38737410

ABSTRACT

Introduction: Nitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth's ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions. Methods: In this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria. Results and Discussion: Our tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment.

4.
Sci Total Environ ; 933: 173149, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740200

ABSTRACT

Vegetation responses to climate change are typically nonlinear with varied time effects, yet current research lacks comprehensiveness and precise definitions, hindering a deeper understanding of the underlying mechanisms. This study focuses on the mountain-type Qilian Mountain National Park (QMNP), investigating the characteristics and patterns of these nonlinear time effects using a generalized additive model (GAM) based on MODIS-NDVI, growing season temperature, and precipitation data. The results show that 1) The time effects of climate change on vegetation exhibit significant spatial variations, differing across vegetation types and topographic conditions. Accounting for optimal time effects can increase the explanatory power of climate on vegetation change by 6.8 %. Precipitation responses are mainly characterized by time-lag and time-accumulation effects, notably in meadows and steppes, while temperature responses are largely cumulative, especially in steppes. The altitude and slope significantly influence the pattern of vegetation response to climate, particularly in areas with high altitudes and steep slopes. 2) There is a significant nonlinear relationship between vegetation growth and both precipitation and temperature, with the nonlinear relationship between precipitation and vegetation being stronger than that with temperature, particularly in the western and central regions of the park. Different vegetation types exhibit significant variations in their response to climate change, with deserts and steppes being more sensitive to precipitation. 3) Precipitation is the primary driver of vegetation change in the QMNP, particularly for high-elevation vegetation and herbaceous vegetation. The complex temporal patterns of vegetation response to climate change in the QMNP not only deepen the understanding of the intricate relationship between regional vegetation and climate variability but also provide a methodological reference for global studies on vegetation responses to climate change.

5.
Opt Lett ; 49(7): 1656-1659, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560829

ABSTRACT

The escalating surge in datacenter traffic creates a pressing demand for augmenting the capacity of cost-effective intensity modulation and direct detection (IM/DD) systems. In this Letter, we report the demonstration of the single-lane 128-GBaud probabilistically shaped (PS)-PAM-20 IM/DD transmission using only a single digital-to-analog converter (DAC) for a net 400 G/λ system. Based on the advanced digital signal processing (DSP), we achieve net bitrates of up to 437 Gb/s for optical back-to-back and 432 Gb/s after the 0.5-km SSMF transmission in the C-band with 128-Gbaud PS-PAM-20 signals. This work is the latest demonstration on ultra-high-order PS-PAM signals achieving net bitrates exceeding 400 Gb/s despite symbol rate limitations. Notably, to the best of our knowledge, the realized net information rate ([net bitrate]/[symbol rate]) of 3.37 marks a new achievement within the domain of 400 G/λ IM/DD systems, with promising implications for enhancing bandwidth efficiency in the upcoming 1.6-Tb Ethernet scenario.

6.
Oncol Lett ; 27(5): 226, 2024 May.
Article in English | MEDLINE | ID: mdl-38586205

ABSTRACT

Elevated expression of long non-coding RNA homeobox A cluster antisense RNA 2 (lncRNA HOXA-AS2) is known to have prognostic value in various solid tumors. The present meta-analysis aimed to comprehensively quantify its prognostic significance across a wider spectrum of malignancies and to provide an updated synthesis of evidence that could refine prognostic models. To achieve this aim, multiple databases were carefully searched for lncRNA HOXA-AS2-related articles published in the past 10 years. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to demonstrate the prognostic value of lncRNA HOXA-AS2 using Stata 15.0 software. The function of lncRNA HOXA-AS2 was inferred from its associations with key clinical outcomes such as lymph node metastasis, distant metastasis, tumor stage and tumor size, which may reflect its role in tumor biology. In the present systematic review and meta-analysis of 454 patients across 7 studies, it was found that high lncRNA HOXA-AS2 expression was significantly associated with a shorter overall survival (OS) time in patients with cancer (HR=2.14; 95% CI, 1.40-3.27; P<0.001). High lncRNA HOXA-AS2 expression was also associated with lymph node metastasis [odds ratio (OR)=2.06; 95% CI, 1.07-3.99; P=0.032], distant metastasis (OR=2.11; 95% CI, 1.15-3.88; P=0.016), advanced tumor stage (OR=2.71; 95% CI, 1.50-4.89; P=0.001) and larger tumor size (OR=2.02; 95% CI, 0.86-4.78; P=0.006). However, no significant association was observed with age (OR=1.00; 95% CI, 0.63-1.59; P=0.991) or sex (OR=1.55; 95% CI, 0.72-3.34; P=0.258). In conclusion, elevated expression of lncRNA HOXA-AS2 was significantly related to poor clinical outcomes in various cancer types, such as osteosarcoma, non-small cell lung cancer and papillary thyroid carcinoma, a finding that was further confirmed by the present study. Specifically, the potential of lncRNAHOXA-AS2 as a biomarker in assessing tumor stage, metastasis risk and OS in patients was demonstrated. However, the results of the present study also indicated that the expression of lncRNA HOXA-AS2 was not significantly associated with age or sex, suggesting its role in cancer progression might be independent of these factors. This insight may direct future research to place more focus on the relationship between lncRNA HOXA-AS2 and specific cancer types and clinical characteristics.

7.
Sci Total Environ ; 924: 171701, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38490412

ABSTRACT

Triclosan (TCS), a biocide used in various day-to-day products, has been associated with several toxic effects in aquatic organisms. In the present study, biochemical and hematological alterations were evaluated after 14 d (sublethal) exposure of tap water (control), acetone (solvent control), 5, 10, 20, and 50 µg/L (environmentally relevant concentrations) TCS to the embryos/hatchlings of Cirrhinus mrigala, a major freshwater carp distributed in tropic and sub-tropical areas of Asia. A concentration-dependent increase in the content of urea and protein carbonyl, while a decrease in the total protein, glucose, cholesterol, triglycerides, uric acid, and bilirubin was observed after the exposure. Hematological analysis revealed a decrease in the total erythrocyte count, hemoglobin, and partial pressure of oxygen, while there was an increase in the total leucocyte count, carbon dioxide, and partial pressure of carbon dioxide and serum electrolytes. Comet assay demonstrates a concentration-dependent increase in tail length, tail moment, olive tail moment, and percent tail DNA. An amino acid analyzer showed a TCS-dose-dependent increase in various amino acids. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis revealed different proteins ranging from 6.5 to 200 kDa, demonstrating TCS-induced upregulation. Fourier transform infrared spectra analysis exhibited a decline in peak area percents with an increase in the concentration of TCS in water. Curve fitting of amide I (1,700-1600 cm-1) showed a decline in α-helix and turns and an increase in ß-sheets. Nuclear magnetic resonance study also revealed concentration-dependent alterations in the metabolites after 14 d exposure. TCS caused alterations in the biomolecules and heamatological parameters of fish, raising the possibility that small amounts of TCS may change the species richness in natural aquatic habitats. In addition, consuming TCS-contaminated fish may have detrimental effects on human health. Consequently, there is a need for the proper utilisation and disposal of this hazardous compound in legitimate quantities.


Subject(s)
Carps , Cyprinidae , Triclosan , Water Pollutants, Chemical , Animals , Humans , Triclosan/toxicity , Triclosan/metabolism , Carbon Dioxide/metabolism , Cyprinidae/metabolism , Water/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
8.
Sci Rep ; 14(1): 7608, 2024 03 31.
Article in English | MEDLINE | ID: mdl-38556570

ABSTRACT

Human pose estimation is a crucial area of study in computer vision. Transformer-based pose estimation algorithms have gained popularity for their excellent performance and relatively compact parameterization. However, these algorithms often face challenges including high computational demands and insensitivity to local details. To address these problems, the Twin attention module was introduced in TransPose to improve model efficiency and reduce resource consumption. Additionally, to address issues related to insufficient joint feature representation and poor network recognition performance, the enhanced TransPose model, named VTTransPose, replaced the basic block in the third subnet with the intra-level feature fusion module V block. The performance of the proposed VTTransPose model was validated on the public datasets COCO val2017 and COCO test-dev2017. The experimental results on COCO val2017 and COCO test-dev2017 indicate that the AP evaluation index scores of the VTTransPose network proposed are 76.5 and 73.6 respectively, marking improvements of 0.4 and 0.2 over the original TransPose network. Additionally, VTTransPose exhibited a reduction of 4.8G FLOPs, 2M parameters, and approximately 40% lower memory usage during training compared to the original TransPose model. All the experimental results demonstrate that the proposed VTTransPose is more accurate, efficient, and lightweight compared to the original TransPose model.


Subject(s)
Algorithms , Electric Power Supplies , Humans , Recognition, Psychology , Twins
9.
BMC Med Genomics ; 17(1): 47, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317175

ABSTRACT

BACKGROUND: Mutations in fibrillin-1 (FBN1) are known to be associated with Marfan syndrome (MFS), an autosomal dominant connective tissue disorder. Most FBN1 mutations are missense or nonsense mutations. Traditional molecular genetic testing for the FBN1 gene, like Sanger sequencing, may miss disease-causing mutations in the gene's regulatory regions or non-coding sequences, as well as partial or complete gene deletions and duplications. METHODS: Next-generation sequencing, multiplex ligation-dependent probe amplification and gap PCR were conducted on two MFS patients to screen for disease-causing mutations. RESULTS: We identified two large deletions in FBN1 from two MFS patients. One patient had a 0.23 Mb deletion (NC_000015.9:g.48550506_48779360del) including 5'UTR-exon6 of FBN1. The other patient harbored a 1416 bp deletion (NC_000015.9:g.48410869_48412284del) affecting the last exon, exon 66, of the FBN1 gene. CONCLUSION: Our results expanded the number of large FBN1 deletions and highlighted the importance of screening for large deletions in FBN1 in clinical genetic testing, especially for those with the classic MFS phenotype.


Subject(s)
Marfan Syndrome , Multiplex Polymerase Chain Reaction , Humans , Genetic Testing , Mutation , Marfan Syndrome/genetics , Marfan Syndrome/diagnosis , High-Throughput Nucleotide Sequencing , Fibrillin-1/genetics , Adipokines/genetics
10.
World J Psychiatry ; 14(1): 26-35, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38327895

ABSTRACT

BACKGROUND: With the continuous growth of the modern elderly population, the risk of fracture increases. Hip fracture is a common type of fracture in older people. Total hip arthroplasty (THA) has significant advantages in relieving chronic pain and promoting the recovery of hip joint function. AIM: To investigate the effect of ulinastatin combined with dexmedetomidine (Dex) on the incidences of postoperative cognitive dysfunction (POCD) and emergence agitation in elderly patients who underwent THA. METHODS: A total of 397 patients who underwent THA from February 2019 to August 2022. We conducted a three-year retrospective cohort study in Shaanxi Provincial People's Hospital. Comprehensive demographic data were obtained from the electronic medical record system. We collected preoperative, intraoperative, and postoperative data. One hundred twenty-nine patients who were administered Dex during the operation were included in the Dex group. One hundred fifty patients who were intravenously injected with ulinastatin 15 min before anesthesia induction were included in the ulinastatin group. One hundred eighteen patients who were administered ulinastatin combined with Dex during the operation were included in the Dex + ulinastatin group. The patients' perioperative conditions, hemodynamic indexes, postoperative Mini-Mental State Examination (MMSE) scores, Ramsay score, incidence of POCD, and serum inflammatory cytokines were evaluated. RESULTS: There was a significant difference in the 24 h visual analogue scale score among the three groups, and the score in the Dex + ulinastatin group was the lowest (P < 0.05). Compared with the Dex and ulinastatin group, the MMSE scores of the Dex + ulinastatin group were significantly increased at 1 and 7 d after the operation (all P < 0.05). Compared with those in the Dex and ulinastatin groups, incidence of POCD, levels of serum inflammatory cytokines in the Dex + ulinastatin group were significantly decreased at 1 and 7 d after the operation (all P < 0.05). The observer's assessment of the alertness/sedation score and Ramsay score of the Dex + ulinastatin group were significantly different from those of the Dex and ulinastatin groups on the first day after the operation (all P < 0.05). CONCLUSION: Ulinastatin combined with Dex can prevent the occurrence of POCD and emergence agitation in elderly patients undergoing THA.

11.
ACS Infect Dis ; 10(3): 951-960, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38315114

ABSTRACT

The emergence of multidrug-resistant (MDR) bacteria presents a significant challenge to public health, increasing the risk of infections that are resistant to current antibiotic treatment. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics in the prevention of MDR bacterial infections. In the present study, we identified a novel cathelicidin AMP from Gekko japonicus, which exhibited broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with minimal inhibitory concentrations ranging from 2.34 to 4.69 µg/mL. To improve its potential therapeutic application, a series of peptides was synthesized based on the active region of the gecko-derived cathelicidin. The lead peptide (RH-16) showed an antimicrobial activity comparable to that of the parent peptide. Structural characterization revealed that RH-16 adopted an amphipathic α-helical conformation. Furthermore, RH-16 demonstrated neither hemolytic nor cytotoxic activity but effectively killed a wide range of clinically isolated, drug-resistant bacteria. The antimicrobial activity of RH-16 was attributed to the nonspecific targeting of bacterial membranes, leading to rapid bacterial membrane permeabilization and rupture. RH-16 also retained its antibacterial activity in plasma and exhibited mild toxicity in vivo. Notably, RH-16 offered robust protection against skin infection in a murine model. Therefore, this newly identified cathelicidin AMP may be a strong candidate for future pharmacological development targeting multidrug resistance. The use of a rational design approach for isolating the minimal antimicrobial unit may accelerate the transition of natural AMPs to clinically applicable antibacterial agents.


Subject(s)
Anti-Infective Agents , Cathelicidins , Lizards , Mice , Animals , Cathelicidins/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria
12.
Sensors (Basel) ; 24(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257488

ABSTRACT

As an important direction in computer vision, human pose estimation has received extensive attention in recent years. A High-Resolution Network (HRNet) can achieve effective estimation results as a classical human pose estimation method. However, the complex structure of the model is not conducive to deployment under limited computer resources. Therefore, an improved Efficient and Lightweight HRNet (EL-HRNet) model is proposed. In detail, point-wise and grouped convolutions were used to construct a lightweight residual module, replacing the original 3 × 3 module to reduce the parameters. To compensate for the information loss caused by the network's lightweight nature, the Convolutional Block Attention Module (CBAM) is introduced after the new lightweight residual module to construct the Lightweight Attention Basicblock (LA-Basicblock) module to achieve high-precision human pose estimation. To verify the effectiveness of the proposed EL-HRNet, experiments were carried out using the COCO2017 and MPII datasets. The experimental results show that the EL-HRNet model requires only 5 million parameters and 2.0 GFlops calculations and achieves an AP score of 67.1% on the COCO2017 validation set. In addition, PCKh@0.5mean is 87.7% on the MPII validation set, and EL-HRNet shows a good balance between model complexity and human pose estimation accuracy.

13.
Food Sci Biotechnol ; 33(1): 47-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186623

ABSTRACT

Tea polyphenols were used as substrates and oxidized successively by polyphenol oxidase and peroxidase to prepare theabrownins (TBs-dE). The conversion rate of catechins to TBs-dE was 90.91%. The ultraviolet and infrared spectroscopic properties and zeta potential of TBs-dE were characterized. TBs-dE is more stable at pH 5.0-7.0, about 25 °C or in dark environment. Ultraviolet light and sunlight can deepen its color due to the further oxidative polymerization. Mg2+, Cu2+, and Al3+ had a significant effect on the stability of TBs-dE. The inhibitory rates of TBs-dE (1 mg/mL) against Staphylococcus aureus and Escherichia coli DH5α were 51.45% and 45.05%, respectively. After TBs-dE treatment, the cell morphology of both bacteria changed, some cell walls were blurred, and the cytoplasmic content leaked. The research results can provide theoretical support for the industrialization of theabrownins.

14.
Nat Commun ; 15(1): 842, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287016

ABSTRACT

The constant emergence of SARS-CoV-2 variants continues to impair the efficacy of existing neutralizing antibodies, especially XBB.1.5 and EG.5, which showed exceptional immune evasion properties. Here, we identify a highly conserved neutralizing epitope targeted by a broad-spectrum neutralizing antibody BA7535, which demonstrates high neutralization potency against not only previous variants, such as Alpha, Beta, Gamma, Delta and Omicron BA.1-BA.5, but also more recently emerged Omicron subvariants, including BF.7, CH.1.1, XBB.1, XBB.1.5, XBB.1.9.1, EG.5. Structural analysis of the Omicron Spike trimer with BA7535-Fab using cryo-EM indicates that BA7535 recognizes a highly conserved cryptic receptor-binding domain (RBD) epitope, avoiding most of the mutational hot spots in RBD. Furthermore, structural simulation based on the interaction of BA7535-Fab/RBD complexes dissects the broadly neutralizing effect of BA7535 against latest variants. Therapeutic and prophylactic treatment with BA7535 alone or in combination with BA7208 protected female mice from the circulating Omicron BA.5 and XBB.1 variant infection, suggesting the highly conserved neutralizing epitope serves as a potential target for developing highly potent therapeutic antibodies and vaccines.


Subject(s)
COVID-19 , Female , Animals , Humans , Mice , SARS-CoV-2/genetics , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Epitopes/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
15.
Orthop J Sports Med ; 12(1): 23259671231210304, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188618

ABSTRACT

Background: Bone-tendon injury is characterized by poor self-healing. It is established that exosomes are favorable for tissue repair and regeneration. However, their effect on bone-tendon healing has not yet been determined. Purpose: To compare the effectiveness of exosomes derived from adipose-derived mesenchymal stromal cells (ADSC-Exos) and bone marrow-derived mesenchymal stromal cells (BMSC-Exos) on bone-tendon interface healing in murine rotator cuff injury model and explore the underlying mechanisms thereof. Study Design: Controlled laboratory study. Methods: A total of 63 male C57BL6 mice with rotator cuff injuries underwent surgery and were randomly assigned to a control group treated without exosomes (n = 21), an ADSC-Exos group (n = 21), or a BMSC-Exos group (n = 21). The mice were sacrificed 4 or 8 weeks after surgery, and tissues were collected for histologic examination and radiographic and biomechanical testing. For exosome tracing in vivo, mice were sacrificed 7 days after surgery. A series of functional assays (radiographic evaluation, proliferation assay, Alizarin Red staining, alkaline phosphatase staining and activity, Alcian blue staining, quantitative polymerase chain reaction analyses, and glycosaminoglycans quantification) were conducted to evaluate the effect of exosomes on the cellular behaviors of the BMSCs in vitro. A statistical analysis of multiple-group comparisons was performed by 1-way analysis of variance, followed by the Bonferroni post hoc test to assess the differences between the 2 groups. Results: The ADSCs and BMSCs were positive for surface markers CD29 and CD90 and negative for surface markers CD34 and CD45 and could differentiate into osteoblasts, chondrocytes, and adipocytes. Exosomes showed a cup- or sphere-shaped morphology and were positive for CD63 and TGS101. Local injection of ADSC-Exos and BMSC-Exos could recruit BMSCs and promote osteogenesis, chondrogenesis, and bone-tendon healing. In vitro, ADSC-Exos and BMSC-Exos could significantly promote the proliferation, migration, osteogenic differentiation, and chondrogenic differentiation ability of BMSCs. In vivo, ADSC-Exos and BMSC-Exos significantly accelerated bone-tendon injury healing, with no significant statistical difference between them. Conclusion: ADSC-Exos and BMSC-Exos exhibited similar therapeutic effects on bone-tendon healing in our murine animal model. Clinical Relevance: ADSC-Exos and BMSC-Exos may be used to develop a new cell-free therapy method for promoting rotator cuff injury repair.

16.
J Transl Med ; 22(1): 112, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38282047

ABSTRACT

BACKGROUND: Malignant progression is the major cause of poor prognosis in breast cancer (BC) patients. Plasma exosomal miRNAs have been reported to be involved in tumor progression, but their roles in BC remain unclear. METHODS: We performed plasma exosomal miRNA sequencing on 45 individuals, including healthy controls and nonmetastatic and metastatic BC patients. We examined the correlation between miRNA expression in tumor tissues and plasma exosomes in BC patients by qRT‒PCR. The effects of exosomal miR-361-3p on BC cells were determined by CellTiter-Glo, migration and wound healing assays. The target genes of miR-361-3p and downstream pathways were explored by dual-luciferase reporter assay, RNA knockdown, rescue experiments, and western blotting. We utilized murine xenograft model to further assess the impact of plasma exosomal miR-361-3p on the malignant progression of BC. RESULTS: We found that the expression level of plasma exosomal miR-361-3p gradually increased with malignant progression in BC patients, and the expression of miR-361-3p in plasma exosomes and BC tissues was positively correlated. Consistently, exosomal miR-361-3p enhanced the migration and proliferation of two BC cell lines, MDA-MB-231 and SK-BR-3. Furthermore, our data showed that miR-361-3p inhibited two novel target genes, ETV7 and BATF2, to activate the PAI-1/ERK pathway, leading to increased BC cell viability. Finally, the consistency of the in vivo experimental results supported that elevated plasma exosomal miR-361-3p promote the malignant progression of BC. CONCLUSIONS: We found for the first time that plasma exosomal miR-361-3p was associated with malignant progression in BC patients. Mechanistically, exosomal miR-361-3p can enhance the migration and proliferation of BC cells by targeting the ETV7 and BATF2/PAI-1/ERK pathways. Our data suggest that plasma exosomal miR-361-3p has the potential to serve as a biomarker for predicting malignant progression in BC patients.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Breast Neoplasms , Exosomes , MicroRNAs , Proto-Oncogene Proteins c-ets , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Exosomes/metabolism , MAP Kinase Signaling System , MicroRNAs/genetics , Plasminogen Activator Inhibitor 1/metabolism , Proto-Oncogene Proteins c-ets/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
17.
FEBS Open Bio ; 14(1): 138-147, 2024 01.
Article in English | MEDLINE | ID: mdl-37953466

ABSTRACT

Extracellular vesicles (EV), important messengers in intercellular communication, can load and transport various bioactive components and participate in different biological processes. We previously isolated glioma human endothelial cells (GhECs) and found that GhECs, rather than normal human brain endothelial cells (NhECs), exhibit specific enrichment of MYO1C into EVs and promote the migration of glioma cells. In this study, we explored the mechanism by which MYO1C is secreted into EVs. We report that such secretion is dependent on RAB31, RAB27B, and FAS. When expression of RAB31 increases, MYO1C is enriched in secretory EVs. Finally, we identified an EV export mechanism for MYO1C that promotes glioma cell invasion and is dependent on RAB31 in GhECs. In summary, our data indicate that the knockdown of RAB31 can reduce enrichment of MYO1C in extracellular vesicles, thereby attenuating the promotion of glioma cell invasion by GhEC-EVs.


Subject(s)
Extracellular Vesicles , Glioma , Humans , Endothelial Cells/metabolism , Glioma/genetics , Glioma/metabolism , Biological Transport , Extracellular Vesicles/metabolism , Myosin Type I/genetics , Myosin Type I/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
18.
Acta Pharmaceutica Sinica ; (12): 161-165, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005451

ABSTRACT

Based on the principle of molecular hybridization, fifteen compounds were designed and synthesized through the combination of aminothiazoloxime and phosphonate fragment. The results showed that these compounds had better inhibitory effects on the tested bacteria. In particular, the activities of compounds Ⅲf and Ⅲi against S. aureus, E. coli, methicillin-resistant S. aureus (MRSA) and fluoroquinolone-resistant E. coli (FREC) were the most significant, the minimal inhibitory concentration (MIC) of Ⅲf was 1, 8, 4, 16 μg·mL-1 respectively, and the MIC of Ⅲi was 4, 4, 16, 8 μg·mL-1 respectively, which were slightly lower than that of the control drug oxacillin, and their anti-E. coli, MRSA and FREC activities were superior to that of the control drug oxacillin. Their activities to S. aureus were close to that of oxacillin, and to E. coli, MRSA and FREC were superior to that of oxacillin, which is worthy of further study.

19.
Pharm Biol ; 62(1): 105-119, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38145345

ABSTRACT

CONTEXT: Qinggong Shoutao Wan (QGSTW) is a pill used as a traditional medicine to treat age-associated memory decline (AAMI). However, its potential mechanisms are unclear. OBJECTIVE: This study elucidates the possible mechanisms of QGSTW in treating AAMI. MATERIALS AND METHODS: Network pharmacology and molecular docking approaches were utilized to identify the potential pathway by which QGSTW alleviates AAMI. C57BL/6J mice were divided randomly into control, model, and QGSTW groups. A mouse model of AAMI was established by d-galactose, and the pathways that QGSTW acts on to ameliorate AAMI were determined by ELISA, immunofluorescence staining and Western blotting after treatment with d-gal (100 mg/kg) and QGSTW (20 mL/kg) for 12 weeks. RESULTS: Network pharmacology demonstrated that the targets of the active components were significantly enriched in the cAMP signaling pathway. AKT1, FOS, GRIN2B, and GRIN1 were the core target proteins. QGSTW treatment increased the discrimination index from -16.92 ± 7.06 to 23.88 ± 15.94% in the novel location test and from -19.54 ± 5.71 to 17.55 ± 6.73% in the novel object recognition test. ELISA showed that QGSTW could increase the levels of cAMP. Western blot analysis revealed that QGSTW could upregulate the expression of PKA, CREB, c-Fos, GluN1, GluA1, CaMKII-α, and SYN. Immunostaining revealed that the expression of SYN was decreased in the CA1 and DG. DISCUSSION AND CONCLUSIONS: This study not only provides new insights into the mechanism of QGSTW in the treatment of AAMI but also provides important information and new research ideas for the discovery of traditional Chinese medicine compounds that can treat AAMI.


Subject(s)
Drugs, Chinese Herbal , Memory Disorders , Mice , Animals , Mice, Inbred C57BL , Molecular Docking Simulation , Blotting, Western , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology
20.
Cell Mol Gastroenterol Hepatol ; 17(4): 539-551, 2024.
Article in English | MEDLINE | ID: mdl-38122985

ABSTRACT

BACKGROUND & AIMS: Apolipoprotein A-1 (ApoA-1), the main apolipoprotein of high-density lipoprotein, has been well studied in the area of lipid metabolism and cardiovascular diseases. In this project, we clarify the function and mechanism of ApoA-1 in liver regeneration. METHODS: Seventy percent of partial hepatectomy was applied in male ApoA-1 knockout mice and wild-type mice to investigate the effects of ApoA-1 on liver regeneration. D-4F (ApoA-1 mimetic peptide), autophagy activator, and AMPK activator were used to explore the mechanism of ApoA-1 on liver regeneration. RESULTS: We demonstrated that ApoA-1 levels were highly expressed during the early stage of liver regeneration. ApoA-1 deficiency greatly impaired liver regeneration after hepatectomy. Meanwhile, we found that ApoA-1 deficiency inhibited autophagy during liver regeneration. The activation of autophagy protected against ApoA-1 deficiency in inhibiting liver regeneration. Furthermore, ApoA-1 deficiency impaired autophagy through AMPK-ULK1 pathway, and AMPK activation significantly improved liver regeneration. The administration of D-4F could accelerated liver regeneration after hepatectomy. CONCLUSIONS: These findings suggested that ApoA-1 played an essential role in liver regeneration through promoting autophagy in hepatocytes via AMPK-ULK1 pathway. Our findings enrich the understanding of the underlying mechanism of liver regeneration and provide a potential therapeutic strategy for liver injury.


Subject(s)
AMP-Activated Protein Kinases , Apolipoprotein A-I , Animals , Male , Mice , AMP-Activated Protein Kinases/metabolism , Apolipoprotein A-I/metabolism , Apolipoprotein A-I/pharmacology , Autophagy , Liver/metabolism , Liver Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...