Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 12: 693334, 2021.
Article in English | MEDLINE | ID: mdl-34690946

ABSTRACT

Sclerotinia sclerotiorum is a devastating necrotrophic fungal pathogen and has a substantial economic impact on crop production worldwide. Magnaporthe appressoria-specific (MAS) proteins have been suggested to be involved in the appressorium formation in Magnaporthe oryzae. Sscnd1, an MAS homolog gene, is highly induced at the early infection stage of S. sclerotiorum. Knock-down the expression of Sscnd1 gene severely reduced the virulence of S. sclerotiorum on intact rapeseed leaves, and their virulence was partially restored on wounded leaves. The Sscnd1 gene-silenced strains exhibited a defect in compound appressorium formation and cell integrity. The instantaneous silencing of Sscnd1 by tobacco rattle virus (TRV)-mediated host-induced gene silencing (HIGS) resulted in a significant reduction in disease development in tobacco. Three transgenic HIGS Arabidopsis lines displayed high levels of resistance to S. sclerotiorum and decreased Sscnd1 expression. Production of specific Sscnd1 siRNA in transgenic HIGS Arabidopsis lines was confirmed by stem-loop qRT-PCR. This study revealed that the compound appressorium-related gene Sscnd1 is required for cell integrity and full virulence in S. sclerotiorum and that Sclerotinia stem rot can be controlled by expressing the silencing constructs of Sscnd1 in host plants.

2.
PLoS Pathog ; 16(10): e1008919, 2020 10.
Article in English | MEDLINE | ID: mdl-33002079

ABSTRACT

Necrotrophic plant pathogen induces host reactive oxygen species (ROS) production, which leads to necrosis in the host, allowing the pathogen to absorb nutrients from the dead tissues. Sclerotinia sclerotiorum is a typical necrotrophic pathogen that causes Sclerotinia stem rot in more than 400 species, resulting in serious economic losses. Here, we found that three S. sclerotiorum genes involved in copper ion import/transport, SsCTR1, SsCCS and SsATX1, were significantly up-regulated during infection of Brassica oleracea. Function analysis revealed that these genes involved in fungal ROS detoxification and virulence. On the host side, four genes putatively involved in copper ion homeostasis, BolCCS, BolCCH, BolMT2A and BolDRT112, were significantly down-regulated in susceptible B. oleracea, but stably expressed in resistant B. oleracea during infection. Their homologs were found to promote resistance to S. sclerotiorum and increase antioxidant activity in Arabidopsis thaliana. Furthermore, copper concentration analysis indicated that copper flow from healthy area into the necrotic area during infection. A model was proposed that S. sclerotiorum utilizes host copper to detoxify ROS in its cells, whereas the resistant hosts may restrict the supply of essential copper nutrients to S. sclerotiorum by maintaining copper ion homeostasis during infection.


Subject(s)
Ascomycota/pathogenicity , Copper/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Disease Resistance/genetics , Gene Expression Profiling/methods , Plant Diseases/microbiology , Sequence Analysis, RNA/methods , Transcriptome/physiology
SELECTION OF CITATIONS
SEARCH DETAIL