Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell Death Dis ; 15(5): 313, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702326

ABSTRACT

CD24 is overexpressed in various tumours and considered a regulator of cell migration, invasion, and proliferation. Recent studies have found that CD24 on ovarian cancer (OC) and triple-negative breast cancer cells interacts with the inhibitory receptor sialic-acid-binding Ig-like lectin 10 (Siglec-10) on tumour-associated macrophages (TAMs) to inhibit phagocytosis by macrophages. Because of its multiple roles in regulating the immune response and tumorigenesis, CD24 is a very promising therapeutic target. However, the regulatory mechanism of CD24 in OC remains unclear. Here, we found that the long noncoding RNA (lncRNA) IL21-AS1, which was upregulated in OC, inhibited macrophage-mediated phagocytosis and promoted OC cell proliferation and apoptosis inhibition. More importantly, after IL21-AS1 knockdown, a significant survival advantage was observed in mice engrafted with tumours. Mechanistically, we identified IL21-AS1 as a hypoxia-induced lncRNA. Moreover, IL21-AS1 increased HIF1α-induced CD24 expression under hypoxic conditions. In parallel, we found that IL21-AS1 acted as a competing endogenous RNA (ceRNA) for miR-561-5p to regulate CD24 expression. Finally, IL21-AS1 increased CD24 expression in OC and facilitated OC progression. Our findings provide a molecular basis for the regulation of CD24, thus highlighting a potential strategy for targeted treatment of OC.


Subject(s)
CD24 Antigen , Carcinogenesis , Ovarian Neoplasms , Phagocytosis , RNA, Long Noncoding , CD24 Antigen/metabolism , CD24 Antigen/genetics , Female , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Phagocytosis/genetics , Animals , Mice , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Disease Progression , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , MicroRNAs/genetics , Mice, Nude , Apoptosis/genetics , Mice, Inbred BALB C , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
2.
Int Immunopharmacol ; 120: 110293, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37182453

ABSTRACT

The purpose of this study was to explore whether and how endoplasmic reticulum stress (ERS) could promote caspase-1-dependent pancreatic acinar cell pyroptosis via the protein kinase R-like ER kinase (PERK) pathway to aggravate acute pancreatitis (AP). Wistar rats and AR42J cells were used to establish the AP model. When indicated, ERS regulation was performed prior to AP induction,and genetic regulation was performed prior to ERS induction. First, we found that caspase-1-dependent pyroptosis and pyroptotic injury were regulated by ERS in AP. By regulating three pathways in the UPR, ERS promotes caspase-1-dependent pyroptosis and pyroptotic injury through the PERK pathway. To further validate that ERS promotes caspase-1-dependent pyroptosis and pyroptotic injury through PERK, we used the PERK inhibitor ISRIB. In conclusion, our results indicated that ERS exacerbates AP by promoting caspase-1-dependent pyroptosis via the PERK pathway.


Subject(s)
Pancreatitis , Rats , Animals , Pancreatitis/chemically induced , Pancreatitis/metabolism , Acinar Cells/metabolism , Caspase 1/metabolism , Pyroptosis , Acute Disease , Apoptosis , Rats, Wistar , Endoplasmic Reticulum Stress/genetics
3.
Microbiol Spectr ; 11(3): e0415222, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37093057

ABSTRACT

Fecal microbiota transplantation (FMT) can induce clinical remission in ulcerative colitis (UC) patients. Enemas, nasoduodenal tubes, and colonoscopies are the most common routes for FMT administration. However, there is a lack of definitive evidence regarding the effectiveness of capsulized FMT treatment in UC patients. In this study, we administered capsulized FMT to 22 patients with active UC to assess the efficiency of capsulized FMT and determine the specific bacteria and metabolite factors associated with the response to clinical remission. Our results showed that the use of capsulized FMT was successful in the treatment of UC patients. Capsulized FMT induced clinical remission and clinical response in 57.1% (12 of 21) and 76.2% (16 of 21) of UC patients, respectively. Gut bacterial richness was increased after FMT in patients who achieved remission. Patients in remission after FMT exhibited enrichment of Alistipes sp. and Odoribacter splanchnicus, along with increased levels of indolelactic acid. Patients who did not achieve remission exhibited enrichment of Escherichia coli and Klebsiella and increased levels of biosynthesis of 12,13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) and lipopolysaccharides. Furthermore, we identified a relationship between specific bacteria and metabolites and the induction of remission in patients. These findings may provide new insights into FMT in UC treatment and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects. (This study has been registered at ClinicalTrails.gov under registration no. NCT03426683). IMPORTANCE Fecal microbiota transplantation has been successfully used in patients. Recently, capsulized FMT was reported to induce a response in patients with UC. However, limited patients were enrolled in such studies, and the functional factors of capsulized FMT have not been reported in the remission of patients with UC. In this study, we prospectively recruited patients with UC to receive capsulized FMT. First, we found that capsulized FMT could induce clinical remission in 57.1% of patients and clinical response in 76.2% after 12 weeks, which was more acceptable. Second, we found a relationship between the decrease of opportunistic pathogen and lipopolysaccharide synthesis in patients in remission after capsulized FMT. We also identified an association between specific bacteria and metabolites and remission induction in patients after capsulized FMT. These findings put forward a possibility for patients to receive FMT at home and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects.


Subject(s)
Colitis, Ulcerative , Communicable Diseases , Gastrointestinal Microbiome , Humans , Bacteria , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Fecal Microbiota Transplantation/methods , Feces/microbiology , Treatment Outcome
4.
Cell Mol Immunol ; 20(5): 512-524, 2023 05.
Article in English | MEDLINE | ID: mdl-36977779

ABSTRACT

CD8+ T cells play a central role in antiviral immune responses. Upon infection, naive CD8+ T cells differentiate into effector cells to eliminate virus-infected cells, and some of these effector cells further differentiate into memory cells to provide long-term protection after infection is resolved. Although extensively investigated, the underlying mechanisms of CD8+ T-cell differentiation remain incompletely understood. Themis is a T-cell-specific protein that plays critical roles in T-cell development. Recent studies using Themis T-cell conditional knockout mice also demonstrated that Themis is required to promote mature CD8+ T-cell homeostasis, cytokine responsiveness, and antibacterial responses. In this study, we used LCMV Armstrong infection as a probe to explore the role of Themis in viral infection. We found that preexisting CD8+ T-cell homeostasis defects and cytokine hyporesponsiveness do not impair viral clearance in Themis T-cell conditional knockout mice. Further analyses showed that in the primary immune response, Themis deficiency promoted the differentiation of CD8+ effector cells and increased their TNF and IFNγ production. Moreover, Themis deficiency impaired memory precursor cell (MPEC) differentiation but promoted short-lived effector cell (SLEC) differentiation. Themis deficiency also enhanced effector cytokine production in memory CD8+ T cells while impairing central memory CD8+ T-cell formation. Mechanistically, we found that Themis mediates PD-1 expression and its signaling in effector CD8+ T cells, which explains the elevated cytokine production in these cells when Themis is disrupted.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocytic Choriomeningitis , Mice , Animals , Lymphocytic choriomeningitis virus , Cell Differentiation , Cytokines/metabolism , Mice, Knockout , Mice, Inbred C57BL , Immunologic Memory , Intercellular Signaling Peptides and Proteins/metabolism
5.
Biomed Pharmacother ; 159: 114300, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36696803

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a common liver disease highly associated with metabolic diseases and gut dysbiosis. Several clinical trials have confirmed that fructooligosaccharides (FOSs) are a viable alternative treatment for NAFLD. However, the mechanisms underlying the activities of FOSs remain unclear. METHODS: In this study, the effects of FOSs were investigated with the use of two C57BL/6 J mouse models of NAFLD induced by a high-fat, high-cholesterol (HFHC) diet and a methionine- and choline-deficient (MCD) diet, respectively. The measured metabolic parameters included body, fat, and liver weights; and blood glucose, glucose tolerance, and serum levels of glutamate transaminase, aspartate transaminase, and triglycerides. Liver tissues were collected for histological analysis. In addition, 16 S rRNA sequencing was conducted to investigate the effects of FOSs on the composition of the gut microbiota of mice in the HFHC and MCD groups and treated with FOSs. RESULTS: FOS treatment attenuated severe metabolic changes and hepatic steatosis caused by the HFHC and MCD diets. In addition, FOSs remodeled the structure of gut microbiota in mice fed the HFHC and MCD diets, as demonstrated by increased abundances of Bacteroidetes (phylum level), Klebsiella variicola, Lactobacillus gasseri, and Clostridium perfringens (species level); and decreased abundances of Verrucomicrobia (phylum level) and the Fissicatena group (genus level). Moreover, the expression levels of genes associated with lipid metabolism and inflammation (i.e., ACC1, PPARγ, CD36, MTTP, APOC3, IL-6, and IL-1ß) were down-regulated after FOS treatment. CONCLUSION: FOSs alleviated the pathological phenotype of NAFLD via remodeling of the gut microbiota composition and decreasing hepatic lipid metabolism, suggesting that FOSs as functional dietary supplements can potentially reduce the risk of NAFLD.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , Mice, Inbred C57BL , Liver , Diet, High-Fat/adverse effects , Choline/metabolism , Choline/pharmacology , Choline/therapeutic use , Methionine/metabolism
6.
Front Immunol ; 13: 985861, 2022.
Article in English | MEDLINE | ID: mdl-36505498

ABSTRACT

Objective: Ferroptosis is an iron-dependent type of regulated cell death triggered by the toxic buildup of lipid peroxides on cell membranes. Nonetheless, the implication of ferroptosis in triple-negative breast cancer (TNBC), which is the most aggressive subtype of breast carcinoma, remains unexplored. Methods: Three TNBC cohorts-TCGA-TNBC, GSE58812, and METABRIC-were adopted. Consensus molecular subtyping on prognostic ferroptosis-related genes was implemented across TNBC. Ferroptosis classification-relevant genes were selected through weighted co-expression network analysis (WGCNA), and a ferroptosis-relevant scoring system was proposed through the LASSO approach. Prognostic and immunological traits, transcriptional and post-transcriptional modulation, therapeutic response, and prediction of potential small-molecule agents were conducted. Results: Three disparate ferroptosis patterns were identified across TNBC, with prognostic and immunological traits in each pattern. The ferroptosis-relevant scoring system was proposed, with poorer overall survival in high-risk patients. This risk score was strongly linked to transcriptional and post-transcriptional mechanisms. The high-risk group had a higher response to anti-PD-1 blockade or sunitinib, and the low-risk group had higher sensitivity to cisplatin. High relationships of risk score with immunological features were observed across pan-cancer. Two Cancer Therapeutics Response Portal (CTRP)-derived agents (SNX-2112 and brefeldin A) and PRISM-derived agents (MEK162, PD-0325901, PD-318088, Ro-4987655, and SAR131675) were predicted, which were intended for high-risk patients. Conclusion: Altogether, our findings unveil prognostic, immunological, and pharmacogenomic features of ferroptosis in TNBC, highlighting the potential clinical utility of ferroptosis in TNBC therapy.


Subject(s)
Ferroptosis , Regulated Cell Death , Triple Negative Breast Neoplasms , Humans , Prognosis , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Ferroptosis/genetics , Risk Factors
7.
Front Immunol ; 13: 869207, 2022.
Article in English | MEDLINE | ID: mdl-35911777

ABSTRACT

Acute pancreatitis (AP) is a common cause of a clinically acute abdomen. Crosstalk between acinar cells and leukocytes (especially macrophages) plays an important role in the development of AP. However, the mechanism mediating the interaction between acinar cells and macrophages is still unclear. This study was performed to explore the role of acinar cell extracellular vesicles (EVs) in the crosstalk between acinar cells and macrophages involved in the pathogenesis of AP. EVs derived from caerulein-treated acinar cells induced macrophage infiltration and aggravated pancreatitis in an AP rat model. Further research showed that acinar cell-derived EV miR-183-5p led to M1 macrophage polarization by downregulating forkhead box protein O1 (FoxO1), and a dual-luciferase reporter assay confirmed that FoxO1 was directly inhibited by miR-183-5p. In addition, acinar cell-derived EV miR-183-5p reduced macrophage phagocytosis. Acinar cell-derived EV miR-183-5p promoted the pancreatic infiltration of M1 macrophages and increased local and systemic damage in vivo. Subsequently, miR-183-5p overexpression in macrophages induced acinar cell damage and trypsin activation, thus further exacerbating the disease. In clinical samples, elevated miR-183-5p levels were detected in serum EVs and positively correlated with the severity of AP. EV miR-183-5p might play an important role in the development of AP by facilitating M1 macrophage polarization, providing a new insight into the diagnosis and targeted management of pancreatitis. Graphical abstract of the present study. In our caerulein-induced AP model, miR-183-5p was upregulated in injured acinar cells and transported by EVs to macrophages. miR-183-5p could induce M1 macrophage polarization through downregulation of FoxO1 and the release of inflammatory cytokines, which could aggravate AP-related injuries. Therefore, a vicious cycle might exist between injured ACs and M1 macrophage polarization, which is fulfilled by EV-transported miR-183-5p, leading to sustainable and progressive AP-related injuries.


Subject(s)
Extracellular Vesicles , MicroRNAs , Pancreatitis , Acinar Cells/metabolism , Acute Disease , Animals , Ceruletide/toxicity , Down-Regulation , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , Pancreatitis/genetics , Pancreatitis/metabolism , Rats
8.
Front Immunol ; 13: 931176, 2022.
Article in English | MEDLINE | ID: mdl-35844603

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the primary causes of cirrhosis and a major risk factor for hepatocellular carcinoma and liver-related death. It has been correlated with changes in the gut microbiota, which promote its development by regulating insulin resistance, bile acid and choline metabolism, and inflammation. Recent studies suggested a controversial role of the stimulator of interferon genes (STING) in the development of NAFLD. Here, we showed that as an immune regulator, STING aggravates the progression of NAFLD in diet-induced mice and correlated it with the changes in hepatic lipid metabolism and gut microbiota diversity. After feeding wild-type (WT) and STING deletion mice with a normal control diet (NCD) or a high-fat diet (HFD), the STING deletion mice showed decreased lipid accumulation and liver inflammation compared with WT mice fed the same diet. In addition, STING specifically produced this hepatoprotective effect by inhibiting the activation of CD8+ T cells. The gut microbiota analysis revealed significant differences in intestinal bacteria between STING deletion mice and WT mice under the same diet and environmental conditions; moreover, differential bacterial genera were associated with altered metabolic phenotypes and involved in related metabolic pathways. Overall, our findings reveal the important regulatory role that STING plays in the progression of NAFLD. In addition, the change in intestinal microbiota diversity may be the contributing factor.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Bacteria , CD8-Positive T-Lymphocytes/metabolism , Diet, High-Fat/adverse effects , Inflammation , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism
9.
Front Pharmacol ; 13: 862502, 2022.
Article in English | MEDLINE | ID: mdl-35662734

ABSTRACT

Objective: Necroptosis represents a new target for cancer immunotherapy and is considered a form of cell death that overcomes apoptosis resistance and enhances tumor immunogenicity. Herein, we aimed to determine necroptosis subtypes and investigate the roles of necroptosis in pancreatic cancer therapy. Methods: Based on the expression of prognostic necroptosis genes in pancreatic cancer samples from TCGA and ICGC cohorts, a consensus clustering approach was implemented for robustly identifying necroptosis subtypes. Immunogenic features were evaluated according to immune cell infiltrations, immune checkpoints, HLA molecules, and cancer-immunity cycle. The sensitivity to chemotherapy agents was estimated using the pRRophetic package. A necroptosis-relevant risk model was developed with a multivariate Cox regression analysis. Results: Five necroptosis subtypes were determined for pancreatic cancer (C1∼C5) with diverse prognosis, immunogenic features, and chemosensitivity. In particular, C4 and C5 presented favorable prognosis and weakened immunogenicity; C2 had high immunogenicity; C1 had undesirable prognosis and high genetic mutations. C5 was the most sensitive to known chemotherapy agents (cisplatin, gemcitabine, docetaxel, and paclitaxel), while C4 displayed resistance to aforementioned agents. The necroptosis-relevant risk model could accurately predict prognosis, immunogenicity, and chemosensitivity. Conclusion: Our findings provided a conceptual framework for comprehending necroptosis in pancreatic cancer biology. Future work is required for evaluating its relevance in the design of combined therapeutic regimens and guiding the best choice for immuno- and chemotherapy.

10.
Front Immunol ; 13: 705472, 2022.
Article in English | MEDLINE | ID: mdl-35769456

ABSTRACT

Extracellular vesicles (EVs) can regulate the polarization of macrophages in a variety of inflammatory diseases by mediating intercellular signal transduction and affecting the occurrence and development of diseases. After macrophages are regulated by EVs, they mainly show two phenotypes: the proinflammatory M1 type and the anti-inflammatory M2 type. A large number of studies have shown that in diseases such as mastitis, inflammatory bowel disease, Acute lung injury, and idiopathic pulmonary fibrosis, EVs promote the progression of the disease by inducing the M1-like polarization of macrophages. In diseases such as liver injury, asthma, and myocardial infarction, EVs can induce M2-like polarization of macrophages, inhibit the inflammatory response, and reduce the severity of the disease, thus indicating new pathways for treating inflammatory diseases. The EV/macrophage axis has become a potential target for inflammatory disease pathogenesis and comprehensive treatment. This article reviews the structure and function of the EV/macrophage axis and summarizes its biological functions in inflammatory diseases to provide insights for the diagnosis and treatment of inflammatory diseases.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Acute Lung Injury/metabolism , Anti-Inflammatory Agents/metabolism , Extracellular Vesicles/metabolism , Female , Humans , Macrophages/metabolism , Signal Transduction
11.
Cell Death Dis ; 13(3): 211, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256590

ABSTRACT

The present study was performed to explore whether and how impaired autophagy could modulate calcium/calmodulin-dependent protein kinase II (CAMKII)-regulated necrosis in the pathogenesis of acute pancreatitis (AP). Wistar rats and AR42J cells were used for AP modeling. When indicated, genetic regulation of CAMKII or ATG7 was performed prior to AP induction. AP-related necrotic injury was positively regulated by the incubation level of CAMKII. ATG7 positively modulated the level of CAMKII and necrosis following AP induction, indicating that there might be a connection between impaired autophagy and CAMKII-regulated necrosis in the pathogenesis of AP. microRNA (miR)-30b-5p was predicted and then verified as the upstream regulator of CAMKII mRNA in our setting of AP. Given that the level of miR-30b-5p was negatively correlated with the incubation levels of ATG7 after AP induction, a rescue experiment was performed and indicated that the miR-30b-5p mimic compromised ATG7 overexpression-induced upregulation of CAMKII-regulated necrosis after AP induction. In conclusion, our results indicate that ATG7-enhanced impaired autophagy exacerbates AP by promoting regulated necrosis via the miR-30b-5p/CAMKII pathway.


Subject(s)
MicroRNAs , Pancreatitis , Acute Disease , Animals , Autophagy/genetics , Autophagy-Related Protein 7/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Necrosis , Pancreatitis/chemically induced , Pancreatitis/genetics , Rats , Rats, Wistar
12.
Front Cell Infect Microbiol ; 12: 1086885, 2022.
Article in English | MEDLINE | ID: mdl-36683707

ABSTRACT

Objective: Fecal microbiota transplantation (FMT) is a novel microbial treatment for patients with ulcerative colitis (UC). In this study, we performed a clinical trial of capsulized FMT in UC patients to determine the association between the gut fungal community and capsulized FMT outcomes. Design: This study recruited patients with active UC (N = 22) and healthy individuals (donor, N = 9) according to the criteria. The patients received capsulized FMT three times a week. Patient stool samples were collected before (week 0) and after FMT follow-up visits at weeks 1, 4, and 12. Fungal communities were analysed using shotgun metagenomic sequencing. Results: According to metagenomic analysis, fungal community evenness index was greater in samples collected from patients, and the overall fungal community was clustered among the samples collected from donors. The dominant fungi in fecal samples collected from donors and patients were Ascomycota and Basidiomycota. However, capsulized FMT ameliorated microbial fungal diversity and altered fungal composition, based on metagenomic analysis of fecal samples collected before and during follow-up visits after capsulized FMT. Fungal diversity decreased in samples collected from patients who achieved remission after capsulized FMT, similar to samples collected from donors. Patients achieving remission after capsulized FMT had specific enrichment of Kazachstania naganishii, Pyricularia grisea, Lachancea thermotolerans, and Schizosaccharomyces pombe compared with patients who did not achieve remission. In addition, the relative abundance of P. grisea was higher in remission fecal samples during the follow-up visit. Meanwhile, decreased levels of pathobionts, such as Candida and Debaryomyces hansenii, were associated with remission in patients receiving capsulized FMT. Conclusion: In the metagenomic analysis of fecal samples from donors and patients with UC receiving capsulized FMT, shifts in gut fungal diversity and composition were associated with capsulized FMT and validated in patients with active UC. We also identified the specific fungi associated with the induction of remission. ClinicalTrails.gov (NCT03426683).


Subject(s)
Colitis, Ulcerative , Fecal Microbiota Transplantation , Humans , Colitis, Ulcerative/therapy , Fecal Microbiota Transplantation/adverse effects , Feces/microbiology , Fungi/genetics , Remission Induction , Treatment Outcome
13.
Front Surg ; 8: 742360, 2021.
Article in English | MEDLINE | ID: mdl-34671639

ABSTRACT

Background: Breast cancer (BC) is a heterogeneous malignant tumor, leading to the second major cause of female mortality. This study aimed to establish an in-depth relationship between ferroptosis-related LncRNA (FRlncRNA) and the prognosis as well as immune microenvironment of the patients with BC. Methods: We downloaded and integrated the gene expression data and the clinical information of the patients with BC from The Cancer Genome Atlas (TCGA) database. The co-expression network analysis and univariate Cox regression analysis were performed to screen out the FRlncRNAs related to prognosis. A cluster analysis was adopted to explore the difference of immune microenvironment between the clusters. Furthermore, we determined the optimal survival-related FRLncRNAs for final signature by LASSO Cox regression analysis. Afterward, we constructed and validated the prediction models, which were further tested in different subgroups. Results: A total of 31 FRLncRNAs were filtrated as prognostic biomarkers. Two clusters were determined, and C1 showed better prognosis and higher infiltration level of immune cells, such as B cells naive, plasma cells, T cells CD8, and T cells CD4 memory activated. However, there were no significantly different clinical characters between the clusters. Gene Set Enrichment Analysis (GSEA) revealed that some metabolism-related pathways and immune-associated pathways were exposed. In addition, 12 FRLncRNAs were determined by LASSO analysis and used to construct a prognostic signature. In both the training and testing sets, patients in the high-risk group had a worse survival than the low-risk patients. The area under the curves (AUCs) of receiver operator characteristic (ROC) curves were about 0.700, showing positive prognostic capacity. More notably, through the comprehensive analysis of heatmap, we regarded LINC01871, LINC02384, LIPE-AS1, and HSD11B1-AS1 as protective LncRNAs, while LINC00393, AC121247.2, AC010655.2, LINC01419, PTPRD-AS1, AC099329.2, OTUD6B-AS1, and LINC02266 were classified as risk LncRNAs. At the same time, the patients in the low-risk groups were more likely to be assigned to C1 and had a higher immune score, which were consistent with a better prognosis. Conclusion: Our research indicated that the ferroptosis-related prognostic signature could be used as novel biomarkers for predicting the prognosis of BC. The differences in the immune microenvironment exhibited by BC patients with different risks and clusters suggested that there may be a complementary synergistic effect between ferroptosis and immunotherapy.

14.
Front Genet ; 12: 702072, 2021.
Article in English | MEDLINE | ID: mdl-34603372

ABSTRACT

Objective: N6-methyladenosine (m6A) modification may modulate various biological processes. Nonetheless, clinical implications of m6A modification in pancreatic cancer are undefined. Herein, this study comprehensively characterized the m6A modification patterns in pancreatic cancer based on m6A regulators. Methods: Genetic mutation and expression pattern of 21 m6A regulators and their correlations were assessed in pancreatic cancer from TCGA dataset. m6A modification patterns were clustered using unsupervised clustering analysis in TCGA and ICGC datasets. Differences in survival, biological functions and immune cell infiltrations were assessed between modification patterns. A m6A scoring system was developed by principal component analysis. Genetic mutations and TIDE scores were compared between high and low m6A score groups. Results: ZC3H13 (11%), RBM15B (9%), YTHDF1 (8%), and YTHDC1 (6%) frequently occurred mutations among m6A regulators. Also, most of regulators were distinctly dysregulated in pancreatic cancer. There were tight crosslinks between regulators. Two m6A modification patterns were constructed, with distinct prognoses, immune cell infiltration and biological functions. Furthermore, we quantified m6A score in each sample. High m6A scores indicated undesirable clinical outcomes. There were more frequent mutations in high m6A score samples. Lower TIDE score was found in high m6A score group, with AUC = 0.61, indicating that m6A scores might be used for predicting the response to immunotherapy. Conclusion: Collectively, these data demonstrated that m6A modification participates pancreatic cancer progress and ornaments immune microenvironment, providing an insight into pancreatic cancer pathogenesis and facilitating precision medicine development.

15.
Front Immunol ; 12: 722206, 2021.
Article in English | MEDLINE | ID: mdl-34484230

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a complex disorder comprehensively influenced by genetic and environmental risk, and research increasingly has indicated the role of microbial dysbiosis in T2DM pathogenesis. However, studies comparing the microbiome characteristics between T2DM and healthy controls have reported inconsistent results. To further identify and describe the characteristics of the intestinal flora of T2DM patients, we performed a systematic review and meta-analysis of stool microbial profiles to discern and describe microbial dysbiosis in T2DM and to explore heterogeneity among 7 studies (600 T2DM cases, 543 controls, 1143 samples in total). Using a random effects model and a fixed effects model, we observed significant differences in beta diversity, but not alpha diversity, between individuals with T2DM and controls. We identified various operational taxonomic unit (OTUs) and bacterial genera with significant odds ratios for T2DM. The T2DM signatures derived from a single study by stepwise feature selection could be applied in other studies. By training on multiple studies, we improved the detection accuracy and disease specificity for T2DM. We also discuss the relationship between T2DM-enriched or T2DM-depleted genera and probiotics and provide new ideas for diabetes prevention and improvement.


Subject(s)
Diabetes Mellitus, Type 2/complications , Dysbiosis/etiology , Gastrointestinal Microbiome , Case-Control Studies , Diabetes Mellitus, Type 2/metabolism , Feces/microbiology , Humans , Metagenome , Metagenomics/methods , Probiotics , RNA, Ribosomal, 16S , ROC Curve
16.
Mol Med Rep ; 23(6)2021 06.
Article in English | MEDLINE | ID: mdl-33880593

ABSTRACT

Breast cancer is the second most prevalent cancer in women worldwide. Long non­coding RNAs (lncRNAs) have been identified as important regulators of tumorigenesis and tumor metastasis. lncRNA FGD5­AS1 has been previously reported as a carcinogenic gene, however its role in breast cancer has yet to be investigated. The present study aimed to understand the function of lncRNA FGD5­AS1 in breast cancer and examine the underlying molecular mechanisms. Sample tissues for downstream gene expression profiling were collected from patients with breast cancer (n=23). The effect of FGD5­AS1 overexpression on cell viability, invasion and migration has been studied in breast cancer cells (MDA­MB­231). Changes in glycolysis were monitored by comparing glucose consumption, lactate production and ATP levels. Using StarBase and TargetScan databases a putative interaction between FGD5­AS1, miR­195­5p and SNF1­like kinase 2 (NUAK2) was predicted in silico. Expression levels of FGD5­AS1, has­miR­195­5p and NUAK2 were validated by reverse transcription­quantitative PCR and interactions were validated using dual­luciferase reporter assays and RNA pull­down. High expression of lncRNA FGD5­AS1 was detected in breast cancer tissue samples and disease model cell lines. Silencing of FGD5­AS1 led to decreased cell proliferation, migration and invasion. It was identified that at a molecular level FGD5­AS1 serves as a sponge of miR­195­5p and alters the expression of its downstream target gene NUAK2. In breast cancer lncRNA FGD5­AS1 serve a key role in glycolysis and tumor progression via the miR­195­5p/NUAK2 axis. The findings of the present study indicated FGD5­AS1 as a candidate target for intervention in patients with breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Guanine Nucleotide Exchange Factors/metabolism , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/metabolism , Breast/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Glycolysis , Guanine Nucleotide Exchange Factors/genetics , Humans , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , RNA, Long Noncoding/genetics
17.
Front Genet ; 12: 783026, 2021.
Article in English | MEDLINE | ID: mdl-35186006

ABSTRACT

Objective: Tumor suppressor genes (TSGs) play critical roles in the cell cycle checkpoints and in modulating genomic stability. Here, we aimed to develop a TSG-based prognostic classifier for breast cancer. Methods: Gene expression profiles and clinical information of breast cancer were curated from TCGA (discovery set) and Gene Expression Omnibus (GEO) repository (GSE12093 and GSE17705 datasets as testing sets). Univariate cox regression analysis and random forest machine learning method were presented for screening characteristic TSGs. After multivariate cox regression analyses, a TSG-based prognostic classifier was constructed. The predictive efficacy was verified by C-index and receiver operating characteristic (ROC) curves. Meanwhile, the predictive independency was assessed through uni- and multivariate cox regression analyses and stratified analyses. Tumor immune infiltration was estimated via ESTIMATE and CIBERSORT algorithms. Small molecule agents were predicted through CMap method. Molecular subtypes were clustered based on the top 100 TSGs with the most variance. Results: A prognostic classifier including nine TSGs was established. High-risk patients were predictive of undesirable prognosis. C-index and ROC curves demonstrated its excellent predictive performance in prognosis. Also, this prognostic classifier was independent of conventional clinicopathological parameters. Low-risk patients exhibited increased infiltration levels of immune cells like T cells CD8. Totally, 48 small molecule compounds were predicted to potentially treat breast cancer. Five TSG-based molecular subtypes were finally constructed, with distinct prognosis and clinicopathological features. Conclusion: Collectively, this study provided a TSG-based prognostic classifier with the potential to predict clinical outcomes and immune infiltration in breast cancer and identified potential small molecule agents against breast cancer.

18.
Cell Death Dis ; 11(7): 522, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651355

ABSTRACT

Growing evidences illustrated that long non-coding RNAs (lncRNAs) exhibited widespread effects on the progression of human cancers via various mechanisms. Long intergenic non-protein-coding RNA 01446 (LINC01446), a 3484-bp ncRNA, is known to locate at chromosome 7p12.1. However, its biological functions and specific action mechanism in gastric cancer (GC) are still unclear. In our study, LINC01446 was proved to be markedly upregulated in GC tissues relative to the normal tissues, and positively correlated with the poor survival of GC patients. The multivariate Cox regression model showed that LINC01446 functioned as an independent prognostic factor for the survival of GC patients. Functionally, LINC01446 facilitated the proliferation and metastasis of GC cells. Moreover, RNA-seq analysis demonstrated that LINC01446 knockdown primarily regulated the genes relating to the growth and migration of GC. Mechanistically, LINC01446 could widely interact with histone lysine-specific demethylase LSD1 and recruit LSD1 to the Ras-related dexamethasone-induced 1 (RASD1) promoter, thereby suppressing RASD1 transcription. Overall, these findings suggest that LINC01446/LSD1/RASD1 regulatory axis may provide bona fide targets for anti-GC therapies.


Subject(s)
Histone Demethylases/metabolism , RNA, Long Noncoding/genetics , Stomach Neoplasms/metabolism , Cell Proliferation/physiology , Disease Progression , Female , Humans , Male , Middle Aged , Neoplasm Metastasis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
19.
Sci Total Environ ; 741: 140423, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32615432

ABSTRACT

With the increasing researches on the role of gut microbiota in human health and disease, appropriate storage method of fecal samples at ambient temperature would conveniently guarantee the precise and reliable microbiota results. Nevertheless, less choice of stabilizer that is cost-efficient and feasible to be used in longer preservation period obstructed the large-scale metagenomics studies. Here, we evaluated the efficacy of a guanidine isothiocyanate-based reagent method EffcGut and compared it with the other already used storage method by means of 16S rRNA gene sequencing technology. We found that guanidine isothiocyanate-based reagent method at ambient temperature was not inferior to OMNIgene·GUT OM-200 and it could retain the similar bacterial community as that of -80 °C within 24 weeks. Furthermore, bacterial diversity and community structure difference were compared among different sample fraction (supernatant, suspension and precipitate) preserved in EffcGut and -80 °C. We found that supernatant under the preservation of EffcGut retained the similar community structure and composition as that of the low temperature preservation method.


Subject(s)
Microbiota , Specimen Handling , Cost-Benefit Analysis , Feces , Humans , RNA, Ribosomal, 16S , Temperature
20.
Mol Omics ; 16(2): 174-175, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32091037

ABSTRACT

Correction for 'Long non-coding RNA SNHG17 is an unfavourable prognostic factor and promotes cell proliferation by epigenetically silencing P57 in colorectal cancer' by Zhonghua Ma et al., Mol. BioSyst., 2017, 13, 2350-2361.

SELECTION OF CITATIONS
SEARCH DETAIL
...