Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 982
Filter
1.
Phys Rev Lett ; 132(20): 206502, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829100

ABSTRACT

The disorder operator is often designed to reveal the conformal field theory (CFT) information in quantum many-body systems. By using large-scale quantum Monte Carlo simulation, we study the scaling behavior of disorder operators on the boundary in the two-dimensional Heisenberg model on the square-octagon lattice with gapless topological edge state. In the Affleck-Kennedy-Lieb-Tasaki phase, the disorder operator is shown to hold the perimeter scaling with a logarithmic term associated with the Luttinger liquid parameter K. This effective Luttinger liquid parameter K reflects the low-energy physics and CFT for (1+1)D boundary. At bulk critical point, the effective K is suppressed but it keeps finite value, indicating the coupling between the gapless edge state and bulk fluctuation. The logarithmic term numerically captures this coupling picture, which reveals the (1+1)D SU(2)_{1} CFT and (2+1)D O(3) CFT at boundary criticality. Our Letter paves a new way to study the exotic boundary state and boundary criticality.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727339

ABSTRACT

A significant weakness of many organic and inorganic aerogels is their poor mechanical behaviour, representing a great impediment to their application. For example, polymer aerogels generally have higher ductility than silica aerogels, but their elastic modulus is considered too low. Herein, we developed extremely low loading (<1 wt%) 2D graphene oxide (GO) nanosheets modified poly (vinyl alcohol) (PVA) aerogels via a facile and environmentally friendly method. The aerogel shows a 9-fold increase in compressional modulus compared to a pure polymer aerogel. With a low density of 0.04 mg/mm3 and a thermal conductivity of only 0.035 W/m·K, it outperforms many commercial insulators and foams. As compared to a pure PVA polymer aerogel, a 170% increase in storage modulus is obtained by adding only 0.6 wt% GO nanosheets. The nanocomposite aerogel demonstrates strong fire resistance, with a 50% increase in burning time and little smoke discharge. After surface modification with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane, the aerogel demonstrates water resistance, which is suitable for outdoor applications in which it would be exposed to precipitation. Our research demonstrates a new pathway for considerable improvement in the performance and application of polymer aerogels.

3.
ACS Appl Mater Interfaces ; 16(19): 25042-25052, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38706304

ABSTRACT

Electrical double-layer transistors (EDLTs) have received extensive research attention owing to their exciting advantages of low working voltage, high biocompatibility, and sensitive interfacial properties in ultrasensitive portable sensing applications. Therefore, it is of great interest to reduce photodetectors' operating voltage and power consumption by utilizing photo-EDLT. In this study, a series of block copolymers (BCPs) of poly(4-vinylpyridine)-block-poly(ethylene oxide) (P4VP-b-PEO) with different compositions were applied to formulate polyelectrolyte with indigo carmine salt in EDLT. Accordingly, PEO conduces ion conduction in the BCP electrolyte and enhances the carrier transport capability in the semiconducting channel; P4VP boosts the photocurrent by providing charge-trapping sites during light illumination. In addition, the severe aggregation of PEO is mitigated by forming a BCP structure with P4VP, enhancing the stability and photoresponse of the photo-EDLT. By optimizing the BCP composition, EDLT comprising P4VP16k-b-PEO5k and indigo carmine provides the highest specific detectivity of 2.1 × 107 Jones, along with ultralow power consumptions of 0.59 nW under 450 nm light illumination and 0.32 pW under dark state. The results indicate that photo-EDLT comprising the BCP electrolyte is a practical approach to reducing phototransistors' operating voltage and power consumption.

4.
Front Plant Sci ; 15: 1351466, 2024.
Article in English | MEDLINE | ID: mdl-38584949

ABSTRACT

Genomic prediction (GP) using haplotypes is considered advantageous compared to GP solely reliant on single nucleotide polymorphisms (SNPs), owing to haplotypes' enhanced ability to capture ancestral information and their higher linkage disequilibrium with quantitative trait loci (QTL). Many empirical studies supported the advantages of haplotype-based GP over SNP-based approaches. Nevertheless, the performance of haplotype-based GP can vary significantly depending on multiple factors, including the traits being studied, the genetic structure of the population under investigation, and the particular method employed for haplotype construction. In this study, we compared haplotype and SNP based prediction accuracies in four populations derived from European maize landraces. Populations comprised either doubled haploid lines (DH) derived directly from landraces, or gamete capture lines (GC) derived from crosses of the landraces with an inbred line. For two different landraces, both types of populations were generated, genotyped with 600k SNPs and phenotyped as lines per se for five traits. Our study explores three prediction scenarios: (i) within each of the four populations, (ii) across DH and GC populations from the same landrace, and (iii) across landraces using either DH or GC populations. Three haplotype construction methods were evaluated: 1. fixed-window blocks (FixedHB), 2. LD-based blocks (HaploView), and 3. IBD-based blocks (HaploBlocker). In within population predictions, FixedHB and HaploView methods performed as well as or slightly better than SNPs for all traits. HaploBlocker improved accuracy for certain traits but exhibited inferior performance for others. In prediction across populations, the parameter setting from HaploBlocker which controls the construction of shared haplotypes between populations played a crucial role for obtaining optimal results. When predicting across landraces, accuracies were low for both, SNP and haplotype approaches, but for specific traits substantial improvement was observed with HaploBlocker. This study provides recommendations for optimal haplotype construction and identifies relevant parameters for constructing haplotypes in the context of genomic prediction.

5.
Article in English | MEDLINE | ID: mdl-38654471

ABSTRACT

CONTEXT: Congenital hypothyroidism (CH) is the most common endocrine disorder in neonates, but its etiology is still poorly understood. OBJECTIVE: We performed whole exome sequencing to identify novel causative gene for CH and functional studies to validate its role in the occurrence of CH. METHODS: Whole exome sequencing in 98 CH patients not harboring known CH candidate genes and bioinformatic analysis were performed. Functional analysis was performed using morpholino, a synthetic short antisense oligonucleotide that contains 25 DNA bases on a methylene morpholine backbone, in zebrafish and CRISPR‒Cas9-mediated gene knockout in mice. RESULTS: Eukaryotic translation initiation factor 4B (EIF4B) was identified as the most promising candidate gene. The EIF4B gene was inherited in an autosomal recessive model, and one patient with thyroid dysgenesis carried EIF4B biallelic variants (p.S430F/p.P328L). In zebrafish, the knockdown of eif4ba/b expression caused thyroid dysgenesis and growth retardation. Thyroid hormone levels were significantly decreased in morphants compared with controls. Thyroxine treatment in morphants partially rescued growth retardation. In mice, the homozygous conceptuses of Eif4b+/- parents did not survive. Eif4b knockout embryos showed severe growth retardation, including thyroid dysgenesis and embryonic lethality before E18.5. CONCLUSION: These experimental data supported a role for EIF4B function in the pathogenesis of the hypothyroid phenotype seen in CH patients. Our work indicated that EIF4B was identified as a novel candidate gene in CH. EIF4B is essential for animal survival, but further studies are needed to validate its role in the pathogenesis of CH.

6.
Emerg Microbes Infect ; 13(1): 2343912, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38629574

ABSTRACT

Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.


Subject(s)
Chickens , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Vaccination , Animals , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Chickens/virology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza in Birds/virology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Mice , Humans , China , Evolution, Molecular , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/immunology , Mice, Inbred BALB C , Virulence , Phylogeny , Female , Poultry Diseases/virology , Poultry Diseases/prevention & control , Poultry/virology
7.
Nat Commun ; 15(1): 3495, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664399

ABSTRACT

Quantum annealing, which involves quantum tunnelling among possible solutions, has state-of-the-art applications not only in quickly finding the lowest-energy configuration of a complex system, but also in quantum computing. Here we report a single-crystal study of the frustrated magnet α-CoV2O6, consisting of a triangular arrangement of ferromagnetic Ising spin chains without evident structural disorder. We observe quantum annealing phenomena resulting from time-reversal symmetry breaking in a tiny transverse field. Below ~ 1 K, the system exhibits no indication of approaching the lowest-energy state for at least 15 hours in zero transverse field, but quickly converges towards that configuration with a nearly temperature-independent relaxation time of ~ 10 seconds in a transverse field of ~ 3.5 mK. Our many-body simulations show qualitative agreement with the experimental results, and suggest that a tiny transverse field can profoundly enhance quantum spin fluctuations, triggering rapid quantum annealing process from topological metastable Kosterlitz-Thouless phases, at low temperatures.

8.
Food Chem ; 450: 139318, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38613965

ABSTRACT

For texture control in plant-meat alternatives, the interrelationship between apparent characteristics and chemical bonds in high-fiber formulations remains unclear. The influence of mulberry leaf powder on apparent characteristics and chemical bonds of raw materials, block and strip products at addition amounts of 0.5-25% was analyzed. The results showed that 8% addition significantly increased the chewiness of the block by 98.12%. The strips' texture shows a downward trend, and the processing produced more redness and color difference. Additives promoted the formation of voids, lamellar and filamentous structures, and the strip produced more striped structures. Disulfide bonds significantly increased in the block, and the ß-turn in the secondary structure enhanced by 12.20%. The ß-turn transformed into a ß-sheet in strips. Principal component analysis revealed that the texture improvement was associated with producing disulfide bonds and ß-turn, providing a basis for high-fiber components to improve products' apparent characteristics by chemical bonds.


Subject(s)
Morus , Plant Leaves , Powders , Principal Component Analysis , Morus/chemistry , Plant Leaves/chemistry , Powders/chemistry , Food Handling , Meat Products/analysis , Plant Extracts/chemistry , Color , Animals , Meat Substitutes
9.
Eur J Med Chem ; 271: 116435, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38648728

ABSTRACT

Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Multiple Myeloma , Small Molecule Libraries , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Humans , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/therapeutic use , Molecular Structure
10.
World J Clin Cases ; 12(10): 1750-1765, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38660076

ABSTRACT

BACKGROUND: Both N6-methyladenosine (m6A) methylation and autophagy are considered relevant to the pathogenesis of ulcerative colitis (UC). However, a systematic exploration of the role of the com-bination of m6A methylation and autophagy in UC remains to be performed. AIM: To elucidate the autophagy-related genes of m6A with a diagnostic value for UC. METHODS: The correlation between m6A-related genes and autophagy-related genes (ARGs) was analyzed. Finally, gene set enrichment analysis (GSEA) was performed on the characteristic genes. Additionally, the expression levels of four characteristic genes were verified in dextran sulfate sodium (DSS)-induced colitis in mice. RESULTS: GSEA indicated that BAG3, P4HB and TP53INP2 were involved in the inflammatory response and TNF-α signalling via nuclear factor kappa-B. Furthermore, polymerase chain reaction results showed significantly higher mRNA levels of BAG3 and P4HB and lower mRNA levels of FMR1 and TP53INP2 in the DSS group compared to the control group. CONCLUSION: This study identified four m6A-ARGs that predict the occurrence of UC, thus providing a scientific reference for further studies on the pathogenesis of UC.

11.
Sci Total Environ ; 925: 171326, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38460703

ABSTRACT

Environmental fluoride exposure has been linked to numerous cases of fluorosis worldwide. Previous studies have indicated that long-term exposure to fluoride can result in intellectual damage among children. However, a comprehensive health risk assessment of fluorosis-induced intellectual damage is still pending. In this research, we utilized the Bayesian Benchmark Dose Analysis System (BBMD) to investigate the dose-response relationship between urinary fluoride (U-F) concentration and Raven scores in adults from Nayong, Guizhou, China. Our research findings indecate a dose-response relationship between the concentration of U-F and intelligence scores in adults. As the benchmark response (BMR) increased, both the benchmark concentration (BMCs) and the lower bound of the credible interval (BMCLs) increased. Specifically, BMCs for the association between U-F and IQ score were determined to be 0.18 mg/L (BMCL1 = 0.08 mg/L), 0.91 mg/L (BMCL5 = 0.40 mg/L), 1.83 mg/L (BMCL10 = 0.83 mg/L) when using BMRs of 1 %, 5 %, and 10 %. These results indicate that U-F can serve as an effective biomarker for monitoring the loss of IQ in population. We propose three interim targets for public policy in preventing interllectual harm from fluoride exposure.


Subject(s)
Fluorides , Fluorosis, Dental , Child , Adult , Humans , Fluorides/analysis , Fluorosis, Dental/epidemiology , Benchmarking , Bayes Theorem , Intelligence , China/epidemiology
13.
Bioresour Technol ; 399: 130604, 2024 May.
Article in English | MEDLINE | ID: mdl-38499206

ABSTRACT

The biofilm of an engineered strain is limited by slow growth and low yield, resulting in an unsatisfactory ability to resist external stress and promote catalytic efficiency. Here, biofilms used as robust living catalysts were manipulated through dual functionalized gene regulation and carrier modification strategies. The results showed that gene overexpression regulates the autoinducer-2 activity, extracellular polymeric substance content and colony behavior of Escherichia coli, and the biofilm yield of csgD overexpressed strains increased by 79.35 % compared to that of the wild type strains (p < 0.05). In addition, the hydrophilicity of polyurethane fibres modified with potassium dichromate increased significantly, and biofilm adhesion increased by 105.80 %. Finally, the isoquercitrin yield in the catalytic reaction of the biofilm reinforced by the csgD overexpression strain and the modified carrier was 247.85 % higher than that of the untreated group. Overall, this study has developed engineered strains biofilm with special functions, providing possibilities for catalytic applications.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/genetics , Extracellular Polymeric Substance Matrix/metabolism , Gene Expression Regulation, Bacterial , Biofilms , Escherichia coli/genetics , Bacterial Proteins/metabolism
14.
J Am Chem Soc ; 146(15): 10812-10821, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38466658

ABSTRACT

Aqueous electrolytes with a low voltage window (1.23 V) and prone side reactions, such as hydrogen evolution reaction and cathode dissolution, compromise the advantages of high safety and low cost of aqueous metal-ion batteries. Herein, introducing catechol (CAT) into the aqueous electrolyte, an outer sphere electron transfer mechanism is initiated to inhibit the water reactivity, achieving an electrochemical window of 3.24 V. In a typical Zn-ion battery, the outer sphere electrons jump from CAT to Zn2+-H2O at a geometrically favorable situation and between the solvation molecules without breaking or forming chemical bonds as that of the inner sphere electron transfers. The excited state π-π stacking further leads to the outer sphere electron transfer occurring at the electrolyte/electrode interface. This high-voltage electrolyte allows achieving an operating voltage two times higher than that of the usual aqueous electrolytes and provides almost the highest energy density and power density for the V2O5-based aqueous Zn-ion full batteries. The Zn//Zn symmetric battery delivers a 4000 h lifespan, and the Zn//V2O5 full battery achieves a ∼380 W h kg-1 energy density and a 92% capacity retention after 3000 cycles at 1 A g-1 and a 2.4 V output voltage. This outer sphere electron transfer strategy paves the way for designing high-voltage aqueous electrolytes.

15.
J Med Chem ; 67(5): 4194-4224, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38442261

ABSTRACT

Retinoic acid receptor-related orphan receptor γ (RORγ) acts as a crucial transcription factor in Th17 cells and is involved in diverse autoimmune disorders. RORγ allosteric inhibitors have gained significant research focus as a novel strategy to inhibit RORγ transcriptional activity. Leveraging the high affinity and selectivity of RORγ allosteric inhibitor MRL-871 (1), this study presents the design, synthesis, and characterization of 11 allosteric fluorescent probes. Utilizing the preferred probe 12h, we established an efficient and cost-effective fluorescence polarization-based affinity assay for screening RORγ allosteric binders. By employing virtual screening in conjunction with this assay, 10 novel RORγ allosteric inhibitors were identified. The initial SAR studies focusing on the hit compound G381-0087 are also presented. The encouraging outcomes indicate that probe 12h possesses the potential to function as a powerful tool in facilitating the exploration of RORγ allosteric inhibitors and furthering understanding of RORγ function.


Subject(s)
Fluorescent Dyes , Th17 Cells , Fluorescent Dyes/pharmacology , Transcription Factors , Gene Expression Regulation , Fluorescence Polarization , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
16.
J Med Chem ; 67(6): 4346-4375, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38484122

ABSTRACT

Over the past decades, the role of rearranged during transfection (RET) alterations in tumorigenesis has been firmly established. RET kinase inhibition is an essential therapeutic target in patients with RET-altered cancers. In clinical practice, initial efficacy can be achieved in patients through the utilization of multikinase inhibitors (MKIs) with RET inhibitory activity. However, the effectiveness of these MKIs is impeded by the adverse events associated with off-target effects. Recently, many RET-selective inhibitors, characterized by heightened specificity and potency, have been developed, representing a substantial breakthrough in the field of RET precision oncology. This Perspective focuses on the contemporary understanding of RET mutations, recent advancements in next-generation RET inhibitors, and the challenges associated with resistance to RET inhibitors. It provides valuable insights for the development of next-generation MKIs and selective RET inhibitors.


Subject(s)
Lung Neoplasms , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Proto-Oncogene Proteins c-ret/genetics , Precision Medicine , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Lung Neoplasms/drug therapy
17.
Huan Jing Ke Xue ; 45(2): 992-1003, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471937

ABSTRACT

The process of vegetation restoration is often accompanied by significant changes in aboveground plant diversity. To explore the driving mechanism of litter nutrient-soil nutrient-enzyme activity stoichiometry on aboveground vegetation change is of great importance for maintaining regional biodiversity conservation and ecological stability. Taking typical abandoned farmland of different restoration years (1, 8, 16, 31, and 50 a) in the Qinling Mountains as the research object, the variation characteristics of plant community diversity during vegetation restoration were analyzed through field investigation. Litter nutrients, soil nutrients, and the activities of five extracellular enzymes, including ß-1,4-glucosidase (BG), cellobiohydrolase (CBH), ß-1,4-N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and acid phosphatase (AP), were determined. The characteristics of litter nutrients, soil nutrients, and enzyme stoichiometric ratios during vegetation restoration and the driving mechanism of plant diversity changes were discussed. The results showed that the plant community diversity index firstly decreased and then increased with the increase in vegetation restoration years, and the minimum was reached at 16 years after restoration. The results of principal component analysis showed that there were significant differences between total plant community diversity index and litter-soil-enzyme stoichiometric characteristics in different years of vegetation restoration. The plant community diversity index had a strong positive correlation with litter C∶P ratio and litter N∶P ratio but had a negative correlation with soil enzyme C∶P ratio (EEA C∶P). The results of redundancy analysis showed that soil EEA C∶P had the highest explanation rate of plant diversity changes during vegetation restoration (25.93%), followed by soil TP (5.94%), which was the key factor regulating plant diversity changes. In conclusion, plant species and quantity increased significantly in abandoned farmland in the middle part of the Qinling Mountains at the late stage of vegetation restoration. Changes in the soil environment affected microbial metabolic activities and thus changed enzyme activities. Litter-soil-soil extracellular enzymes affected the community environment and plant diversity through feedback and regulation. EEA C∶P and TP were the main driving factors of aboveground plant diversity change during vegetation restoration.


Subject(s)
Biodiversity , Plants , Soil , Soil Microbiology , Nutrients , Ecosystem , China
18.
J Surg Oncol ; 129(6): 1056-1062, 2024 May.
Article in English | MEDLINE | ID: mdl-38314575

ABSTRACT

BACKGROUND: Whether T2 esophageal squamous cell carcinoma should be subclassified remains controversial. We aimed to investigate the impact of the depth of muscularis propria invasion on nodal status and survival outcomes. METHODS: We identified patients with pT2 esophageal squamous cell carcinoma who underwent primary surgery from January 2009 to June 2017. Clinical data were extracted from prospectively maintained databases. Tumor muscularis propria invasion was stratified into superficial or deep. Binary logistic regression was used to determine risk factors for lymph node metastases. The impact of the depth of muscularis propria invasion on survival was investigated using Kaplan‒Meier analysis and a Cox proportional hazard regression model. RESULTS: A total of 750 patients from three institutes were investigated. The depth of muscularis propria invasion (odds ratio [OR]: 3.95, 95% confidence interval [CI]: 2.46-6.35; p < 0.001) was correlated with lymph node metastases using logistic regression. T substage (hazard ratio [HR]: 1.37, 95% CI: 1.05-1.79; p < 0.001) and N status (HR: 1.51, 95% CI: 1.05-2.17; p < 0.001) were independent risk factors in multivariate Cox regression analysis. The deep muscle invasion was associated with worse overall survival (HR: 1.52, 95% CI: 1.19-1.94; p = 0.001) than superficial, specifically in T2N0 patients (HR: 1.38, 95% CI: 1.08-1.94; p = 0.035). CONCLUSIONS: We found that deep muscle invasion was associated with significantly worse outcomes and recommended the substaging of pT2 esophageal squamous cell carcinoma in routine pathological examination.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lymphatic Metastasis , Neoplasm Invasiveness , Humans , Male , Female , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Esophageal Neoplasms/surgery , Middle Aged , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Squamous Cell Carcinoma/mortality , Aged , Survival Rate , Retrospective Studies , Esophagectomy , Neoplasm Staging , Follow-Up Studies , Prognosis , Lymph Nodes/pathology , Lymph Nodes/surgery , Prospective Studies
20.
Bioorg Med Chem ; 100: 117631, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38330848

ABSTRACT

Acute myeloid leukemia (AML) is the most common type of blood cancer and has been strongly correlated with the overexpression of Fms-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family. With the emergence of FLT3 internal tandem duplication alteration (ITD) and tyrosine kinase domain (TKD) mutations, the development of FLT3 small molecule inhibitors has become an effective medicinal chemistry strategy for AML. Herein, we have designed and synthesized two series of 1H-pyrrolo[2,3-b]pyridine derivatives CM1-CM24, as FLT3 inhibitors based on F14, which we previously reported, that can target the hydrophobic FLT3 back pocket. Among these derivates, CM5 showed significant inhibition of FLT3 and FLT3-ITD, with inhibitory percentages of 57.72 % and 53.77 % respectively at the concentration of 1 µΜ. Furthermore, CM5 demonstrated potent inhibition against FLT3-dependent human AML cell lines MOLM-13 and MV4-11 (both harboring FLT3-ITD mutant), with IC50 values of 0.75 µM and 0.64 µM respectively. In our cellular mechanistic studies, CM5 also effectively induces apoptosis by arresting cell cycle progression in the G0/G1 phase. In addition, the amide and urea linker function were discussed in detail based on computational simulations studies. CM5 will serve as a novel lead compound for further structural modification and development of FLT3 inhibitors specifically targeting AML with FLT3-ITD mutations.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Humans , Apoptosis , Cell Line, Tumor , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Pyridines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...