Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Int J Biol Macromol ; 279(Pt 3): 135309, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236962

ABSTRACT

Polysaccharides can benefit the liver via modulation of the gut microbiota, but the exact mechanism is still unclear. This study demonstrated that the effect of Scytosiphon lomentaria fucoidan (SLF) on alcohol-induced liver injury can be closely related to the level of Parabacteroides distasonis (Pd) via in vivo and in vitro models. Further mice experiment showed that Pd alleviated liver injury and inflammation by suppressing the NF-κB/MAPK pathways and activating Nrf2 pathway. The underlying mechanism can be closely associated with modulation of the gut microbiota, particularly an increase in microbiota diversity and beneficial bacteria and a reduction in Proteobacteria. Targeted metabolomics indicated that Pd ameliorated alcohol-induced dysbiosis of microbiota metabolites profile, primarily affecting amino acid metabolism. Moreover, Pd reduced the level of total bile acids (BAs) and improved BAs profile, affecting the expression levels of BA-associated genes in the liver and ileum involved in BA synthesis, transport, and reabsorption. This study suggests that SLF can benefit alcohol-induced liver injury via P. distasonis-mediated regulation of the gut-liver axis.

2.
Int J Biol Macromol ; 276(Pt 1): 133699, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972652

ABSTRACT

Chemotherapy-induced mucositis (CIM) is the typical side effect of chemotherapy. This study investigates the potential of alginate oligosaccharide (AOS) in ameliorating CIM induced by 5-fluorouracil (5-FU) in a murine model and its underlying mechanisms. AOS effectively mitigated body weight loss and histopathological damage, modulated inflammatory cytokines and attenuated the oxidative stress. AOS restored intestinal barrier integrity through enhancing expression of tight junction proteins via MLCK signaling pathway. AOS alleviated intestinal mucosal damage by inhibiting TLR4/MyD88/NF-κB signaling pathway, downregulating the pro-apoptotic protein Bax and upregulating the anti-apoptotic protein Bcl-2. Moreover, AOS significantly enriched intestinal Akkermansiaceae and increased the production of short-chain fatty acids (SCFAs), most notably butyrate and isovalerate. Pre-treatment with butyrate and isovalerate also alleviated 5-FU-induced CIM. In conclusion, AOS effectively mitigated CIM through strenghthening intestinal barrier, attenuating inflammation, and modulating gut microbiota and intestianl levels of butyrate and isovalerate. These finding indicate that AOS could be potentially utilized as a supplemental strategy for prevention or mitigation of CIM.


Subject(s)
Alginates , Butyrates , Fluorouracil , Intestinal Mucosa , Mucositis , Oligosaccharides , Fluorouracil/adverse effects , Animals , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/metabolism , Mucositis/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Butyrates/pharmacology , Butyrates/metabolism , Alginates/pharmacology , Alginates/chemistry , Gastrointestinal Microbiome/drug effects , Male , Oxidative Stress/drug effects , Signal Transduction/drug effects , Cytokines/metabolism
3.
Sci Rep ; 14(1): 15650, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977905

ABSTRACT

To assess the agreement and repeatability of scotopic pupil size measurement using 2WIN-S (Adaptica, Padova, Italy) portable refractor in Chinese adults. This prospective non-randomized open-label controlled study assessed the scotopic pupil size of 100 right eyes using OPD-Scan III (Optical path difference) (Nidek Technologies, Gamagori, Japan) and 2WIN-S. OPD-Scan III and 2WIN-S measure pupil size using infrared light and detector, while 2WIN-S measures bilateral eyes simultaneously, OPD-Scan III measures unilateral eyes individually. Participants were first measured once using OPD-Scan III and two consecutive measurements were performed using 2WIN-S after 15 min of rest interval. The primary outcome was to evaluate the agreement between 2WIN-S and OPD-Scan III, and the secondary outcome was to evaluate the repeatability of 2WIN-S. Scotopic pupil size of 100 right eyes of 100 adults (28 male and 72 female) aged 18-53 years (mean 36 ± 12 years) was assessed using OPD-Scan III and 2WIN-S, respectively. The mean scotopic pupil size of OPD-Scan III and 2WIN-S was recorded to be 6.24 ± 0.88 mm and 6.27 ± 0.81 mm, respectively. For the mean scotopic pupil size of OPD-Scan III and 2WIN-S the difference was - 0.03 mm (95%CI - 0.10 to 0.04 mm), p = 0.445, the 95% limits of agreement (LOA) was - 0.71 to 0.66 mm. ICC between the two devices was 0.92 (95% CI 0.88-0.94) (ICC > 0.9 indicates excellent consistency). Coefficients of repeatability (CoR) of 2WIN-S was 0.37, which has a high repeatability. For the mean scotopic pupil size of 2WIN-S of the repeated measurements, the difference was -0.04 mm (95%CI - 0.08 to 0.01 mm), p = 0.019, the 95% limits of agreement (LOA) was - 0.41 to 0.32 mm, with a narrow LOA. However, the majority of the variations were less than ± 0.50 mm (98% of scotopic pupil size measurements were below this threshold), within the clinically acceptable range (± 0.50 mm). Our study showed excellent agreement between 2WIN-S and OPD-Scan III (ICC > 0.9) and a good repeatability of 2WIN-S (CoR = 0.37). This study suggests a novel technique for measuring pupillary responses in low light conditions, which can be considered an alternative to OPD-Scan III in clinical settings.


Subject(s)
Pupil , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , China , East Asian People , Prospective Studies , Pupil/physiology , Reproducibility of Results
4.
Carbohydr Polym ; 342: 122435, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048209

ABSTRACT

Increasing studies focus on depolymerization of chondroitin sulfate (CS) to enhance its biological activities. In the present study, low-molecular-weight chondroitin sulfate (LMWCS)­iron complexes were obtained by photocatalysis-Fenton reaction. After degradation with the optimal condition of 0.25 % (w/v) TiO2, 10 mM FeSO4, and 400 mM H2O2 for 0, 15, and 60 min, the average relative molecular weights of CS were reduced to 4.77, 2.47, and 1.21 kDa, respectively. Electron paramagnetic resonance and free radical capture test identified •OH, •O2-, and h+ in the photocatalysis-Fenton system, among them h+ was the major contributor for CS degradation. The structures of degradation products were analyzed by UV, CD, XRD, SEM-EDS, and NMR, and the results indicated that CS chelated iron with its carboxyl and sulfate groups, leading to changes in conformation and microtopography. Then 10 oligosaccharides were identified in the degradation products using HPLC-MSn and the depolymerization mechanism was proposed. Furthermore, iron release was observed in simulated gastrointestinal digestion of LMWCS­iron complexes. Notably, the everted gut sac experiment demonstrated that LMWCS­iron complex possessed 3.75 times higher iron absorption than FeSO4 (p < 0.01) and 12.60 times higher CS absorption than original CS (p < 0.0001). In addition, LMWCS­iron exhibited stronger in vitro antioxidant activity than CS.


Subject(s)
Chondroitin Sulfates , Hydrogen Peroxide , Iron , Molecular Weight , Titanium , Chondroitin Sulfates/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Catalysis , Titanium/chemistry , Biological Availability , Animals , Photochemical Processes
5.
Cancer Lett ; 598: 217110, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38986733

ABSTRACT

PP2A B55α, encoded by PPP2R2A, acts as a regulatory subunit of the serine/threonine phosphatase PP2A. Despite a frequent loss of heterozygosity of PPP2R2A in cases of non-small cell lung cancer (NSCLC), research on PP2A B55α's functions remains limited and controversial. To investigate the biological roles of PP2A B55α, we conducted bulk RNA-sequencing to assess the impact of PPP2R2A knockdown using two shRNAs in a NSCLC cell line. Gene set enrichment analysis (GSEA) of the RNA-sequencing data revealed significant enrichment of the epithelial-mesenchymal transition (EMT) pathway, with SNAI2 (the gene encoding Slug) emerging as one of the top candidates. Our findings demonstrate that PP2A B55α suppresses EMT, as PPP2R2A deficiency through knockdown or homozygous or hemizygous depletion promotes EMT and metastatic behavior in NSCLC cells, as evidenced by changes in EMT biomarkers, invasion and migration abilities, as well as metastasis in a tail vein assay. Mechanistically, PP2A B55α inhibits EMT by downregulating SNAI2 expression via the GSK3ß-ß-catenin pathway. Importantly, PPP2R2A deficiency also slows cell proliferation by disrupting DNA replication, particularly in PPP2R2A-/- cells. Furthermore, PPP2R2A deficiency, especially PPP2R2A-/- cells, leads to an increase in the cancer stem cell population, which correlates with enhanced resistance to chemotherapy. Overall, the decrease in PP2A B55α levels due to hemizygous/homozygous depletion heightens EMT and the metastatic or stemness/drug resistance potential of NSCLC cells despite their proliferation disadvantage. Our study highlights the significance of PP2A B55α in EMT and metastasis and suggests that targeting EMT/stemness could be a potential therapeutic strategy for treating PPP2R2A-deficient NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Protein Phosphatase 2 , Snail Family Transcription Factors , Epithelial-Mesenchymal Transition/genetics , Humans , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , Cell Movement , Cell Line, Tumor , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , A549 Cells , Mice , Neoplasm Invasiveness
6.
Imeta ; 3(3): e196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898984

ABSTRACT

Akkermansia muciniphila pretreatment mitigated Listeria monocytogenes infection in mice. A. muciniphila improved gut microbiota disturbed by L. monocytogenes infection and significantly increased the level of intestinal linoleic acid in mice. Linoleic acid strengthened the intestinal epithelial barrier and reduced pathogen translocation partly by regulating NF-κB/MLCK pathway in a GPR40-dependent manner.

7.
Food Funct ; 15(13): 7108-7123, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38874578

ABSTRACT

Background: Inflammatory bowel disease (IBD) is an increasing health burden worldwide. Punicalagin, a bioactive component rich in pomegranate rind, has been shown to attenuate chemical or bacteria-induced experimental colitis in mice, but whether punicalagin exerts its function through modulating gut microbiota and metabolites remains unexplored. Results: Punicalagin (100 mg per kg per day) administered orally to mice alleviated dextran-sodium sulfate (DSS)-induced colitis. Gut microbiota analyzed by 16S rRNA sequencing showed that punicalagin altered gut microbiota by increasing the Lachnospiraceae_NK4A136_group and Bifidobacterium abundance. To evaluate the effect of punicalagin-modulated microbiota and its metabolites in colitis mice, we transplanted fecal microbiota and sterile fecal filtrate (SFF) to mice treated with oral antibiotics. The results of fecal microbiota transplantation (FMT) demonstrated that punicalagin's anti-colitic effect is transferable by transplanting punicalagin-modulated gut microbiota and its metabolites. Additionally, we discovered that punicalagin-modulated sterile fecal filtrate also exhibits anti-colitis effects, as evidenced by improved intestinal barrier integrity and decreased inflammation. Subsequently, fecal metabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). The analysis revealed that punicalagin significantly increased the level of D-ribose. In vitro experiments showed that D-ribose has both anti-inflammatory and antioxidant properties. Furthermore, D-ribose significantly mitigated DSS-induced colitis symptoms in mice. Conclusions: Overall, this study demonstrated that gut microbiota and its metabolites partly mediate the protective effect of punicalagin against DSS-induced colitis in mice. D-ribose is a key metabolite that contributes to the anti-colitic effect of punicalagin in mice.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Hydrolyzable Tannins , Mice, Inbred C57BL , Animals , Hydrolyzable Tannins/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Colitis/chemically induced , Colitis/drug therapy , Colitis/microbiology , Male , Disease Models, Animal , Fecal Microbiota Transplantation , Feces/microbiology
8.
Food Res Int ; 190: 114555, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945560

ABSTRACT

Cronobacter sakazakii, an opportunity foodborne pathogen, could contaminate a broad range of food materials and cause life-threatening symptoms in infants. The bacterial envelope structure contribute to bacterial environment tolerance, biofilm formation and virulence in various in Gram-negative bacteria. DsbA and PepP are two important genes related to the biogenesis and stability of bacterial envelope. In this study, the DsbA and PepP were deleted in C. sakazakii to evaluate their contribution to stress tolerance and virulence of the pathogen. The bacterial environment resistance assays showed DsbA and PepP are essential in controlling C. sakazakii resistance to heat and desiccation in different mediums, as well as acid, osmotic, oxidation and bile salt stresses. DsbA and PepP also played an important role in regulating biofilm formation and motility. Furthermore, DsbA and PepP deletion weaken C. sakazakii adhesion and invasion in Caco-2, intracellular survival and replication in RAW 264.7. qRT-PCR results showed that DsbA and PepP of C. sakazakii played roles in regulating the expression of several genes associated with environment stress tolerance, biofilm formation, bacterial motility and cellular invasion. These findings indicate that DsbA and PepP played an important regulatory role in the environment resisitance, biofilm formation and virulence of C. sakazakii, which enrich understanding of genetic determinants of adaptability and virulence of the pathogen.


Subject(s)
Biofilms , Cronobacter sakazakii , Virulence Factors , Cronobacter sakazakii/genetics , Cronobacter sakazakii/pathogenicity , Virulence Factors/genetics , Biofilms/growth & development , Humans , Mice , Virulence/genetics , Caco-2 Cells , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , RAW 264.7 Cells , Bacterial Adhesion/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Bacterial , Food Microbiology
9.
Int J Biol Macromol ; 274(Pt 1): 133014, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852729

ABSTRACT

Algal polysaccharides possess many biological activities and health benefits, such as antioxidant, anti-tumor, anti-coagulant, and immunomodulatory potential. Gut microbiota has emerged as one of the major contributor in mediating the health benefits of algal polysaccharides. In this study we showed that Haematococcus pluvialis polysaccharides (HPP) decreased serum transaminase levels and hepatic triglyceride content, alleviated inflammation and oxidative stress in the liver of chronic and binge ethanol diet-fed mice. Furthermore, HPP reduced endotoxemia, improved gut microbiota dysbiosis, inhibited epithelial barrier disruption and gut vascular barrier (GVB) damage in ethanol diet-fed mice. Co-housing vehicle-fed mice with HPP-fed mice alleviated ethanol-induced liver damage and endotoxemia. Moreover, fecal microbiota transplantation from HPP-fed mice into antibiotic-induced microbiota-depleted recipients also alleviated ethanol-induced liver injury and improved gut epithelial and vascular barrier. Our study demonstrated that HPP ameliorated ethanol-induced gut epithelial and vascular barrier dysfunction through alteration of gut microbiota, therefore preventing alcoholic liver damage.


Subject(s)
Chlorophyceae , Fatty Liver , Gastrointestinal Microbiome , Intestinal Mucosa , Polysaccharides , Chlorophyceae/chemistry , Polysaccharides/pharmacology , Male , Animals , Mice , Mice, Inbred C57BL , Gastrointestinal Microbiome/drug effects , Ethanol/toxicity , Epithelial Cells/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Fatty Liver/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Capillary Permeability/drug effects , Feces/microbiology , Oxidative Stress/drug effects
10.
Int J Biol Macromol ; 269(Pt 1): 132072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705339

ABSTRACT

Chitosan (CTS) and chitosan oligosaccharides (COS) have been widely applied in food industry due to their bioactivities and functions. However, CTS and COS with positive charges could interact with proteins, such as whey protein isolate (WPI), influencing their digestion. Interaction among CTS/COS, FUC, and WPI/enzymes was studied by spectroscopy, chromatography, and chemical methods in order to reveal the role of FUC in relieving the inhibition of protein digestibility by CTS/COS and demonstrate the action mechanisms. As shown by the results, the addition of FUC increased degree of hydrolysis (DH) and free protein in the mixture of CTS and WPI to 3.1-fold and 1.8-fold, respectively, while raise DH value and free protein in the mixture of COS and WPI to 6.7-fold and 1.2-fold, respectively. The interaction between amino, carboxyl, sulfate, and hydroxyl groups from carbohydrates and protein could be observed, and notably, FUC could interact with CTS/COS preferentially to prevent CTS/COS from combining with WPI. In addition, the addition of FUC could also relieve the combination of CTS to trypsin, increasing the fluorescence intensity and concentration of trypsin by 83.3 % and 4.8 %, respectively. Thus, the present study demonstrated that FUC could alleviate the inhibitory effect of CTS/COS on protein digestion.


Subject(s)
Chitosan , Oligosaccharides , Polysaccharides , Chitosan/chemistry , Chitosan/pharmacology , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/metabolism , Hydrolysis , Whey Proteins/chemistry , Whey Proteins/pharmacology , Whey Proteins/metabolism , Trypsin/metabolism , Trypsin/chemistry , Proteolysis/drug effects
11.
Nat Commun ; 15(1): 4667, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821952

ABSTRACT

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.


Subject(s)
Auranofin , Carcinoma, Non-Small-Cell Lung , Checkpoint Kinase 1 , Lung Neoplasms , Oxidation-Reduction , Thioredoxins , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Humans , Oxidation-Reduction/drug effects , Thioredoxins/metabolism , Cell Line, Tumor , Auranofin/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleotide Reductases/metabolism , Ribonucleotide Reductases/antagonists & inhibitors , Drug Synergism , Animals
12.
Foods ; 13(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540924

ABSTRACT

The aim of this study was to explore the immunomodulatory effect of Polygonatum sibiricum saponin (PS) in a cyclophosphamide-induced (Cy) immunosuppression mice model. Oral administration of PS by gavage effectively alleviated weight loss caused by Cy and increased the index of immune organs. PS promoted the proliferation of splenic lymphocytes and T cell subsets (CD3+, CD355+, CD4+/CD8+) and relieved the xylene-induced inflammatory response and Cy-induced increase of serum hemolysin. Moreover, PS increased serum levels of lactate dehydrogenase and acid phosphatase. PS elevated serum level of cytokines and immunoglobulins (TNF-α, IFN-γ, IL-4, IL-6, IL-ß, SIgA, and IgG) and the expression of mRNA of IL-10, TNF-α, and IL-6 in the spleen. Increased mRNA expression of tight junction protein (ZO-1, Mucin2, Occludin) expression and protein expression of IL-6/MyD88/TLR4 in the small intestine showed that PS exhibited a restorative effect on intestinal mucosal injury caused by cyclophosphamide. Oral PS prevented Cy-induced decline in leukocytes, red blood cells, lymphocytes, hemoglobin concentrations, and neutrophils, providing evidence for alleviating hematopoietic disorders. In addition, PS increased SOD and NO levels, reduced MDA levels, and improved oxidative damage in the liver. These findings demonstrate that PS has the potential to be developed as a supplemental agent for alleviating immunosuppression caused by chemotherapeutic agents.

13.
Foods ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540953

ABSTRACT

To prevent alcoholic liver disease, the addition of bioactive substances to the alcoholic drink Baijiu has been considered a feasible option. In the present study, the hepatoprotective effects of a sea cucumber sulfated polysaccharide (SCSP) isolated from Stichopus japonicu were investigated. Moreover, in order to enhance its solubility in an alcohol solution, it was depolymerized using a photocatalytic reaction, and the photocatalytic degradation products (dSCSPs) with an average molecular weight of less than 2 kDa were studied and compared with SCSP. They were characterized by a series of chemical and spectroscopy methods and the oligosaccharide fragments in the dSCSP were further identified by HPLC-MSn analysis. Then, the in vivo experiment showed that the addition of SCSP or dSCSP to Baijiu could alleviate alcoholic liver injury in mice. Further analysis also revealed their protective effect in reducing oxidative stress damage and their regulation of the metabolism of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in the liver. Of note, dSCSP was more effective at reducing the level of malondialdehyde in the liver. These findings indicate that the addition of sea cucumber polysaccharide or its low-molecular-weight derivative in Baijiu has the potential to alleviate alcoholic liver injury.

14.
Int J Biol Macromol ; 255: 128092, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979755

ABSTRACT

Thrombosis is a serious threat to human health and life. Fucoidan, a sulfated polysaccharide from brown algae, could prevent coagulation and thrombus after intravenous administration. However, more efforts are still needed to develop its oral agent. In the present study, the absorption and excretion of fucoidan (90.8 kDa) and its degradation products, Dfuc1 (19.2 kDa) and Dfuc2 (5.5 kDa), were determined by HPLC-MS/MS after acid degradation and 1-phenyl-3-methyl-5-pyrazolone derivatization, and their anticoagulation and antithrombotic activities were evaluated in vivo after oral administration. Results showed that the maximum concentrations of fucoidan, Dfuc1 and Dfuc2 in rat plasma all achieved at 2 h after oral administration (150 mg/kg), and they were 41.1 ± 10.6 µg/mL, 45.3 ± 18.5 µg/mL and 59.3 ± 13.7 µg/mL, respectively. In addition, fucoidan, Dfuc1 and Dfuc2 could all prolong the activated partial thromboplastin time in vivo from 23.7 ± 2.7 s (blank control) to 25.1 ± 2.6 s, 27.1 ± 1.7 s and 29.4 ± 3.6 s, respectively. Moreover, fucoidan and its degradation products showed similar antithrombotic effect in carrageenan-induced thrombosis mice, and untargeted metabolomics analysis revealed that they all markedly regulated the carrageenan-induced metabolite disorders, especially the arachidonic acid metabolism. Thus, the degradation products of fucoidan with lower molecular weights are more attractive for the development of oral antithrombotic agents.


Subject(s)
Anticoagulants , Thrombosis , Rats , Mice , Humans , Animals , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Molecular Weight , Carrageenan , Tandem Mass Spectrometry , Thrombosis/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
15.
16.
Foods ; 12(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38137281

ABSTRACT

Due to its significant physiological effects, a sulfated polysaccharide has been considered an important nutrient of sea cucumber, but its metabolism in vivo is still unclear. The present study investigated the metabolism of a sea cucumber sulfated polysaccharide (SCSP) in rats and its influence on the metabolite profiles. The quantification by HPLC-MS/MS revealed that the blood level of SCSP achieved a maximum of 54.0 ± 4.8 µg/mL at 2 h after gavage, almost no SCSP was excreted through urine, and 55.4 ± 29.8% of SCSP was eliminated through feces within 24 h. These results prove the utilization of SCSP by gut microbiota, and a further microbiota sequencing analysis indicated that the SCSP utilization in the gut was positively correlated with Muribaculaceae and Clostridia_UCG-014. In addition, the non-targeted metabolomic analysis demonstrated the significant effects of SCSP administration on the metabolite profiles of blood, urine, and feces. It is worth noting that the SCSP supplement decreased palmitic acid, stearic acid, and oleic acid in blood and urine while increasing stearic acid, linoleic acid, and γ-linolenic acid in feces, suggesting the inhibition of fat absorption and the enhancement of fat excretion by SCSP, respectively. The present study shed light on the metabolism in vivo and the influence on the fat metabolism of SCSP.

17.
Int J Biol Macromol ; 253(Pt 5): 127072, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37774814

ABSTRACT

Excessive protein consumption (EPC) could increase the gastrointestinal burden and impair gut motility. The present study was designed to explore the improvement of chitosan (CTS) and chitosan oligosaccharide (COS) on colonic motility and serum metabolites in rats after EPC. The results of in vivo experiments fully proved that CTS and COS could improve gut motility and reverse the serum metabolites in rats as indicated by LC-MS/MS analysis, and the COS group even showed a better effect than the CTS group. Furthermore, short-chain fatty acids (SCFAs), which could promote gut motility, were also increased to alleviate EPC-induced constipation after supplementation with CTS or COS. In addition, CTS and COS could decrease the concentration of ammonia in serum and down-regulate the levels of H2S and indole. In summary, the present study revealed that CTS and COS could produce SCFAs, improve the colonic motility in rats, reverse the levels of valine, adenosine, cysteine, 1-methyladenosine, indole, and uracil, and enhance aminoacyl-tRNA biosynthesis and valine, leucine and isoleucine degradation. The present study provides novel insights into the potential roles of CTS and COS in alleviating the adverse effects of EPC.


Subject(s)
Chitosan , Rats , Animals , Chitosan/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Fatty Acids, Volatile/pharmacology , Oligosaccharides/pharmacology , Indoles , Valine , Dietary Proteins
18.
Res Sq ; 2023 May 02.
Article in English | MEDLINE | ID: mdl-37205570

ABSTRACT

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but minimal efficacy with substantial toxicity in clinical trials. To explore novel combinational strategies that can overcome these limitations, we performed an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identified thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a novel determinant of CHK1i sensitivity. We established a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR1 inhibitor auronafin, an anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, these findings identify a new pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.

19.
Bioorg Med Chem Lett ; 88: 129280, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37054759

ABSTRACT

Starting from the dialkylaniline indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor lead 3 (IDO1 HeLa IC50 = 7.0 nM), an iterative process of synthesis and screening led to cyclized analog 21 (IDO1 HeLa IC50 = 3.6 nM) which maintained the high potency of 3 while addressing issues of lipophilicity, cytochrome P450 (CYP) inhibition, hERG (human potassium ion channel Kv11.1) inhibition, Pregnane X Receptor (PXR) transactivation, and oxidative metabolic stability. An x-ray crystal structure of a biaryl alkyl ether 11 bound to IDO1 was obtained. Consistent with our earlier results, compound 11 was shown to bind to the apo form of the enzyme.


Subject(s)
Enzyme Inhibitors , Ethers , Humans , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , HeLa Cells , Indoleamine-Pyrrole 2,3,-Dioxygenase
20.
Int J Biol Macromol ; 239: 124295, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37011755

ABSTRACT

In the present study, a fucoidan fraction (ANP-3) was isolated from Ascophyllum nodosum, and the combined application of desulfation, methylation, HPGPC, HPLC-MSn, FT-IR, GC-MS, NMR, and Congo red test elucidated ANP-3 (124.5 kDa) as a triple-helical sulfated polysaccharide constituted by →2)-α-Fucp3S-(1→, →3)-α-Fucp2S4S-(1→, →3,6)-ß-Galp4S-(1→, →3,6)-ß-Manp4S-(1→, →3,6)-ß-Galp4S-(1→,→6)-ß-Manp-(1→, →3)-ß-Galp-(1→, α-Fucp-(1→, and α-GlcAp-(1→ residues. To better understand the relationship between the fucoidan structure of A. nodosum and protective effects against oxidative stress, two fractions ANP-6 and ANP-7 were used as contrast. ANP-6 (63.2 kDa) exhibited no protective effect against H2O2-induced oxidative stress. However, ANP-3 and ANP-7 with the same molecular weight of 124.5 kDa could protect against oxidative stress by down-regulating reactive oxygen species (ROS) and malondialdehyde (MDA) levels and up-regulating total antioxidant capability (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities. Then metabolites analysis indicated that arginine biosynthesis and phenylalanine, tyrosine, and tryptophan biosynthesis metabolic pathways and metabolic biomarkers such as betaine were involved in the effects of ANP-3 and ANP-7. The better protective effect of ANP-7 compared to that of ANP-3 could be attributed to its relatively higher molecular weight, sulfate substitution and →6)-ß-Galp-(1→ content, and lower uronic acid content.


Subject(s)
Ascophyllum , Ascophyllum/chemistry , Spectroscopy, Fourier Transform Infrared , Hydrogen Peroxide , Polysaccharides/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL