Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fitoterapia ; 173: 105804, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38181894

ABSTRACT

Two new compounds eutyditerpenoid A (1) and seco-phenochalasin B (5), together with seven known compounds diaporthein A (2), aspergillon A (3), phenochalasin B (4), cytochalasins Z24 and Z25 (6 and 7), scoparasins A and B (8 and 9) were isolated from marine-derived Eutypella scoparia GZU-4-19Y. Among them, eutyditerpenoid A (1) with a rare 6/7/6 ring system possesing an anhydride moiety was the first example in the pimarane-type diterpenoids. Their structures were determined based on spectroscopic methods and the electronic circular dichroism (ECD) calculations. In the bioassays, all of the isolates were evaluated for their inhibitory activity against NO production induced by lipopolysaccharide in RAW 264.7 cells. Compounds 3 and 7 showed potent NO inhibition activity with IC50 values of 2.1 and 17.1 µM respectively, and the former also significantly suppressed the protein expression of iNOS and COX-2 at the concentration of 2.5 µM.


Subject(s)
Ascomycota , Diterpenes , Indoles , Lactones , Molecular Structure , Ascomycota/chemistry , Diterpenes/pharmacology , Anti-Inflammatory Agents/pharmacology , Abietanes , Cytochalasins
2.
Acta Pharmacol Sin ; 39(1): 74-84, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29022574

ABSTRACT

Acetaminophen (APAP) overdose leads to severe hepatotoxicity. Osthole, a natural coumarin found in traditional Chinese medicinal herbs, has therapeutic potential in the treatment of various diseases. In this study, we investigated the effects of osthole against APAP-induced hepatotoxicity in mice. Mice were administered osthole (100 mg·kg-1·d-1, ip) for 3 d, then on the fourth day APAP (300 mg/kg, ip) was co-administered with osthole. The mice were euthanized post-APAP, their serum and livers were collected for analysis. Pretreatment with osthole significantly attenuated APAP-induced hepatocyte necrosis and the increases in ALT and AST activities. Compared with the mice treated with APAP alone, osthole pretreatment significantly reduced serum MDA levels and hepatic H2O2 levels, and improved liver GSH levels and the GSSG-to-GSH ratio. Meanwhile, osthole pretreatment markedly alleviated the APAP-induced up-regulation of inflammatory cytokines in the livers, and inhibited the expression of hepatic cytochrome P450 enzymes, but it increased the expression of hepatic UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs). Furthermore, osthole pretreatment reversed APAP-induced reduction of hepatic cAMP levels, but pretreatment with H89, a potent selective PKA inhibitor, failed to abolish the beneficial effect of osthole, whereas pretreatment with L-buthionine sulfoximine, a GSH synthesis inhibitor, abrogated the protective effects of osthole on APAP-induced liver injury, and abolished osthole-caused alterations in APAP-metabolizing enzymes. In cultured murine primary hepatocytes and Raw264.7 cells, however, osthole (40 µmol/L) did not alleviate APAP-induced cell death, but it significantly suppressed APAP-caused elevation of inflammatory cytokines. Collectively, we have demonstrated that osthole exerts a preventive effect against APAP-induced hepatotoxicity by inhibiting the metabolic activation of APAP and enhancing its clearance through an antioxidation mechanism.


Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Coumarins/therapeutic use , Protective Agents/therapeutic use , Acetaminophen/administration & dosage , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/administration & dosage , Antioxidants/therapeutic use , Coumarins/administration & dosage , Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/metabolism , Glutathione/metabolism , Hemorrhage/prevention & control , Hydrogen Peroxide/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Necrosis/prevention & control , Oxidative Stress/drug effects , RAW 264.7 Cells , Sulfotransferases/metabolism
3.
Acta Pharmacol Sin ; 38(8): 1120-1128, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28603288

ABSTRACT

Osthole, a natural coumarin found in traditional Chinese medicinal plants, has shown multiple biological activities. In the present study, we investigated the preventive effects of osthole on inflammatory bowel disease (IBD). Colitis was induced in mice by infusing TNBS into the colonic lumen. Before TNBS treatment, the mice received osthole (100 mg·kg-1·d-1, ip) for 3 d. Pretreatment with osthole significantly ameliorated the clinical scores, colon length shortening, colonic histopathological changes and the expression of inflammatory mediators in TNBS-induced colitis. Pretreatment with osthole elevated serum cAMP levels; but treatment with the PKA inhibitor H89 (10 mg·kg-1·d-1, ip) did not abolish the beneficial effects of osthole on TNBS-induced colitis. In mouse peritoneal macrophages, pretreatment with osthole (50 µmol/L) significantly attenuated the LPS-induced elevation of cytokines at the mRNA level; inhibition of PKA completely reversed the inhibitory effects of osthole on IL-1ß, IL-6, COX2, and MCP-1 but not on TNFα. In Raw264.7 cells, the p38 inhibitor SB203580 markedly suppressed LPS-induced upregulation of the cytokines, whereas the PKA inhibitors H89 or KT5720 did not abolish the inhibitory effects of SB203580. Moreover, in LPS-stimulated mouse peritoneal macrophages, SB203580 strongly inhibited the restored expression of IL-1ß, IL-6, COX2, and MCP-1, which was achieved by abolishing the suppressive effects of osthole with the PKA inhibitors. Western blot analysis showed that osthole significantly suppressed the phosphorylation of p38, which was induced by TNBS in mice or by LPS in Raw264.7 cells. Inhibition of PKA partially reversed the suppressive effects of osthole on p38 phosphorylation in LPS-stimulated cells. Collectively, our results suggest that osthole is effective in the prevention of TNBS-induced colitis by reducing the expression of inflammatory mediators and attenuating p38 phosphorylation via both cAMP/PKA-dependent and independent pathways, among which the cAMP/PKA-independent pathway plays a major role.


Subject(s)
Colitis/prevention & control , Coumarins/therapeutic use , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Signal Transduction/drug effects , Animals , Blotting, Western , Colitis/chemically induced , Cytokines/metabolism , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Trinitrobenzenesulfonic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...