Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Anim Sci Biotechnol ; 15(1): 99, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992763

ABSTRACT

BACKGROUND: Excessive backfat deposition lowering carcass grade is a major concern in the pig industry, especially in most breeds of obese type pigs. The mechanisms involved in adipogenesis and fat accumulation in pigs remain unclear. Lysine 2-hydroxyisobutyrylation (Khib), is a novel protein post-translational modification (PTM), which play an important role in transcription, energy metabolism and metastasis of cancer cells, but its role in adipogenesis and fat accumulation has not been shown. RESULTS: In this study, we first analyzed the modification levels of acetylation (Kac), Khib, crotonylation (Kcr) and succinylation (Ksu) of fibro-adipogenic progenitors (FAPs), myogenic precursors (Myo) and mesenchymal stem cells (MSCs) with varied differentiation potential, and found that only Khib modification in FAPs was significantly higher than that in MSCs. Consistently, in parallel with its regulatory enzymes lysine acetyltransferase 5 (KAT5) and histone deacetylase 2 (HDAC2) protein levels, the Khib levels increased quadratically (P < 0.01) during adipogenic differentiation of FAPs. KAT5 knockdown in FAPs inhibited adipogenic differentiation, while HDAC2 knockdown enhanced adipogenic differentiation. We also demonstrated that Khib modification favored to adipogenic differentiation and fat accumulation by comparing Khib levels in FAPs and backfat tissues both derived from obese-type pigs (Laiwu pigs) and lean-type pigs (Duroc pigs), respectively. Accordingly, the expression patterns of KAT5 and HDAC2 matched well to the degree of backfat accumulation in obese- and lean-type pigs. CONCLUSIONS: From the perspective of protein translational modification, we are the first to reveal the role of Khib in adipogenesis and fat deposition in pigs, and provided new clues for the improvement of fat accumulation and distribution as expected via genetic selection and nutritional strategy in obese-type pigs.

2.
Adv Sci (Weinh) ; 10(35): e2305080, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37870215

ABSTRACT

Skeletal muscle comprises a large, heterogeneous assortment of cell populations that interact to maintain muscle homeostasis, but little is known about the mechanism that controls myogenic development in response to artificial selection. Different pig (Sus scrofa) breeds exhibit distinct muscle phenotypes resulting from domestication and selective breeding. Using unbiased single-cell transcriptomic sequencing analysis (scRNA-seq), the impact of artificial selection on cell profiles is investigated in neonatal skeletal muscle of pigs. This work provides panoramic muscle-resident cell profiles and identifies novel and breed-specific cells, mapping them on pseudotime trajectories. Artificial selection has elicited significant changes in muscle-resident cell profiles, while conserving signs of generational environmental challenges. These results suggest that fibro-adipogenic progenitors serve as a cellular interaction hub and that specific transcription factors identified here may serve as candidate target regulons for the pursuit of a specific muscle phenotype. Furthermore, a cross-species comparison of humans, mice, and pigs illustrates the conservation and divergence of mammalian muscle ontology. The findings of this study reveal shifts in cellular heterogeneity, novel cell subpopulations, and their interactions that may greatly facilitate the understanding of the mechanism underlying divergent muscle phenotypes arising from artificial selection.


Subject(s)
Adipogenesis , Muscle, Skeletal , Humans , Animals , Mice , Phenotype , Muscle Development/genetics , RNA , Mammals
3.
Anim Nutr ; 14: 185-192, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37808951

ABSTRACT

The quality of pork determines consumers' purchase intention, which directly affects the economic value of pork. Minimizing the proportion of inferior pork and producing high quality pork are the ultimate goals of the pig industry. Muscle energy metabolism, serving as a regulative hub in organism energy expenditure and storage as a fat deposit, is compatible with myofiber type composition, affecting meat color, intramuscular fat content, tenderness, pH values and drip loss. Increasing data illustrate that dietary nutrients and bioactive ingredients affect muscle energy metabolism, white adipose browning and fat distribution, and myofiber type composition in humans, and rodents. Recently, some studies have shown that modulating muscle energy metabolism and lipid accumulation through nutritional approaches could effectively improve meat quality. This article reviews the progress and development in this field, and specifically discusses the impacts of dietary supply of amino acids, lipids, and gut microbiota as well as maternal nutrition on skeletal muscle energy metabolism, lipid accumulation and meat quality of pigs, so as to provide comprehensive overview with respect to effective avenues for improving meat quality.

4.
J Anim Sci Biotechnol ; 14(1): 114, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37689725

ABSTRACT

BACKGROUND: Maternal nutrition is essential in keeping a highly efficient production system in the pig industry. Laminarin has been shown to improve antioxidant capacity, reduce the inflammatory response, and favor the homeostasis of intestinal microbiota. However, the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown. METHODS: A total of 40 Landrace × Yorkshire multiparous sows on d 85 of gestation, similar in age, body weight (BW), parity and reproductive performance, were randomly divided into four dietary treatments with 10 sows per treatment, receiving a control diet (basal pregnancy or lactating diets) and a basal diet supplemented with 0.025%, 0.05% and 0.10% laminarin, respectively. The experiment lasted from d 85 of gestation to d 21 of lactation. RESULTS: Laminarin supplementation linearly increased number born alive per litter (P = 0.03), average daily feed intake (ADFI, P < 0.01), and total milk yield of sows during the lactation of 1-21 d (P = 0.02). Furthermore, maternal laminarin supplementation increased the average daily gain (ADG) of piglets while tending to reduce the culling and death rate before weaning. In addition, alterations to the composition of colostrum and milk, as well as to serum inflammatory cytokines and immunoglobulins of sows were observed. The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring. CONCLUSIONS: Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.

5.
J Nutr ; 153(11): 3207-3219, 2023 11.
Article in English | MEDLINE | ID: mdl-37696395

ABSTRACT

BACKGROUND: Lauric acid (LA), a major, natural, medium-chain fatty acid, is considered an efficient energy substrate for intense exercise and in patients with long-chain fatty acid ß-oxidation disorders. However, few studies have focused on the role of LA in exercise performance and related glucolipid metabolism in vivo. OBJECTIVES: We aimed to investigate the effect of dietary supplementation with LA on exercise performance and related metabolic mechanisms. METHODS: Male C57BL/6N mice (14 wk old) were fed a basal diet or a diet containing 1% LA, and a series of exercise tests, including a high-speed treadmill test, aerobic endurance exercises, a 4-limb hanging test, and acute aerobic exercises, were performed. RESULTS: Dietary supplementation with 1.0% LA accelerated the recovery from fatigue after explosive exercise (P < 0.05) and improved aerobic endurance and muscle strength in sedentary mice (P = 0.039). Lauric acid intake not only changed muscle fatty acid profiles, including increases in C12:0 and n-6/n-3 PUFAs (P < 0.001) and reductions in C18:0, C20:4n-6, C22:6n-3, and n-3 PUFAs (P < 0.05) but also enhanced fat mobilization from adipose tissue and fatty acid oxidation in the liver, at least partly via the AMP-activated protein kinase-acetyl CoA carboxylase pathway (P < 0.05). Likewise, LA supplementation promoted liver glyconeogenesis and conserved muscular glycogen during acute aerobic exercise (P < 0.05), which was accompanied by an increase in the mitochondrial DNA copy number and Krebs cycle activity in skeletal muscle (P < 0.05). CONCLUSIONS: Dietary supplemental LA serves as an efficient energy substrate for sedentary mice to improve aerobic exercise endurance and muscle strength through regulation of glucolipid metabolism. These findings imply that LA supplementation might be a promising nutritional strategy to improve aerobic exercise performance in sedentary people.


Subject(s)
Dietary Supplements , Muscle, Skeletal , Humans , Male , Mice , Animals , Mice, Inbred C57BL , Adipose Tissue/metabolism , Fatty Acids/metabolism , Physical Endurance
6.
Redox Biol ; 67: 102889, 2023 11.
Article in English | MEDLINE | ID: mdl-37741046

ABSTRACT

Maternal diets during pregnancy and lactation are key determinants that regulate the development of metabolic syndrome (MetS) in offspring. l-malic acid (MA) was previously reported to improve antioxidant capacity and aerobic metabolism. However, the effects of maternal MA consumption on the metabolic features of offspring remain largely unexplored. Herein, through pig models consuming MA-enriched diets during late pregnancy and lactation, we found that maternal MA consumption potentiated the anti-inflammatory and antioxidant capacity of sows, thereby improving their reproductive performance and the growth performance of piglets. Maternal MA consumption also induced a transition of slow-twitch to fast-twitch fibers in the early life of offspring. Along with muscle growth and fiber-type transition, insulin sensitivity and glucose metabolism, including aerobic metabolism and glycolysis, were improved in the skeletal muscle of offspring. An untargeted metabolomic analysis further revealed the contribution of modified amino acid metabolism to the improved aerobic metabolism. Mechanistically, maternal MA consumption remodeled colonic microbiota of their offspring. Briefly, the abundance of Colidextribacter, Romboutsia, and Family_XIII_AD3011_group increased, which were positively associated with the antioxidant capacity and glucose metabolism of skeletal muscles. A decreased abundance of Prevotella, Blautia, Prevotellaceae_NK3B31_group, and Collinsella was also detected, which were involved in less insulin sensitivity. Notably, milk metabolites, such as ascorbic acid (AA) and granisetron (GS), were found as key effectors regulating the gut microbiota composition of piglets. The properties of AA and GS in alleviating insulin resistance, inflammation, and oxidative stress were further verified through mice treated with high-fat diets. Overall, this study revealed that maternal MA consumption could modulate the inflammatory response, antioxidant capacity, and glucose metabolism by regulating the gut microbiota of offspring through the vertical transmission of milk metabolites. These findings suggest the potential of MA in the prevention and treatment of MetS in early life.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Metabolic Syndrome , Animals , Pregnancy , Swine , Female , Mice , Antioxidants , Diet, High-Fat , Ascorbic Acid , Glucose
7.
Cell Death Discov ; 9(1): 87, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894534

ABSTRACT

The normal function of skeletal muscle and adipose tissue ensures whole-body glucose homeostasis. Ca2+ release channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) plays a vital role in regulating diet-induced obesity and disorders, but its functions in peripheral tissue regulating glucose homeostasis remain unexplored. In this study, mice with Ip3r1 specific knockout in skeletal muscle or adipocytes were used for investigating the mediatory role of IP3R1 on whole-body glucose homeostasis under normal or high-fat diet. We reported that IP3R1 expression levels were increased in the white adipose tissue and skeletal muscle of diet-induced obese mice. Ip3r1 knockout in skeletal muscle improved glucose tolerance and insulin sensitivity of mice on a normal chow diet, but worsened insulin resistance in diet-induced obese mice. These changes were associated with the reduced muscle weight and compromised Akt signaling activation. Importantly, Ip3r1 deletion in adipocytes protected mice from diet-induced obesity and glucose intolerance, mainly due to the enhanced lipolysis and AMPK signaling pathway in the visceral fat. In conclusion, our study demonstrates that IP3R1 in skeletal muscle and adipocytes exerts divergent effects on systemic glucose homeostasis, and characterizes adipocyte IP3R1 as a promising target for treating obesity and type 2 diabetes.

8.
Meat Sci ; 198: 109117, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36689802

ABSTRACT

To understand characteristics of carcass traits and meat quality in pig population, 22 indicators of carcass characteristics and meat quality traits were measured on 278 Duroc × Landrace × Yorkshire barrows that were slaughtered in different seasons (spring, summer, autumn and winter). The effects of body weight and season on carcass characteristics and meat quality were analyzed by GLM procedure, followed the Bonferroni multiple test. The phenotypic correlations among those traits were calculated by employing the CORR procedure. In addition, the linear regression equations were constructed by stepwise regression model in REG procedure. The results showed that pigs slaughtered in spring had the heaviest body weight among the four seasons (P < 0.05), pigs slaughtered in summer had the lowest backfat depth and shear force (P < 0.05), and pigs slaughtered in winter had the lowest drip loss (P < 0.05). The results showed more variation in backfat depth, drip loss, intramuscular fat content, and shear force, compared with other indicators across pigs. Body weight had a significant association with loin eye area, average backfat depth and L⁎24 h (P < 0.05). Furthermore, regression equations for drip loss, cooking loss, shear force, and intramuscular fat content were constructed using more accessible indicators. Collectively, this study provided an overall view of carcass and meat quality traits in a commercial pig population in China, and illustrated that season significantly affected carcass characteristics and meat quality traits independently of body weight.


Subject(s)
Body Composition , Meat , Swine , Animals , Seasons , Phenotype , Body Weight
9.
Foods ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36359950

ABSTRACT

L-malic acid is a vital intermediate in the citric acid cycle and has been reported to improve the antioxidant capacity and aerobic oxidation of weaned piglets; however, its application in finishing pigs is limited at present. This study explored the effects of dietary L-malic acid supplementation on the carcass traits and meat quality of finishing pigs. In a 45-day experiment, 192 Duroc × Landrace × Yorkshire pigs (75.01 ± 0.51 kg) were divided into four treatments, i.e., a basal diet supplemented with 0, 0.5%, 1%, and 2% L-malic acid complex. The results showed that L-malic acid supplementation had no effects on the growth performance of finishing pigs. Importantly, L-malic acid significantly increased redness (a*) value at 24-h postmortem (quadratic, p < 0.05) and tended to increase the proportion of oxymyoglobin (OMb) (quadratic, p = 0.10), as well as the total antioxidant capacity (T-AOC) activity (quadratic, p = 0.08) in the longissimus dorsi (LD) muscle. Further, dietary supplementation of 1% L-malic acid markedly increased the protein expression level of slow skeletal myosin heavy chain (MyHC) in the LD muscle (p < 0.05). Moreover, 0.5% and 2% L-malic acid supplementation significantly increased carcass length and loin eye area (p < 0.05). In conclusion, dietary L-malic acid could effectively improve the meat color and carcass traits of finishing pigs.

10.
Front Nutr ; 9: 899871, 2022.
Article in English | MEDLINE | ID: mdl-35898709

ABSTRACT

The aim of this study was to investigate effects of dietary ratio of valine to isoleucine [R(V/I)] on carcass characteristics and meat quality of finishing pigs and whether slaughter weight influence the effect. We carried out a 2 × 3 factorial trial with two slaughter weight (105 vs. 130 kg) and three R(V/I) (0.58, 1.23, and 2.60 at 75-100 kg body weight, and 0.70, 1.24, and 2.39 at 100-135 kg body weight for L-, N- and H-R (V/I), respectively). Data show that increasing slaughter weight significantly increased meat color (a*45 min and b*45 min), drip loss and shear force (P < 0.05). Meanwhile, increasing slaughter weight reduced sarcomere length, the proportion of protein-bound water, and most kinds of muscular total amino acid contents except for tryptophan and arginine, while increased contents of muscular free lysine, tryptophan, leucine, isoleucine, valine, alanine, and arginine in the M. longissimus thoracis (P < 0.05). Health lipid indices based on fatty acid composition of intramuscular lipid were improved as the slaughter weight increased (P < 0.05). Notably, pigs received N-R (V/I) diet improved carcass traits in terms of thinner backfat thickness and higher fat-free lean index, as well as increased meat flavor-contributing amino acids at the cost of reduced intramuscular fat content and increased shear force of cooked meat compared with the pigs fed L-R (V/I) and H-R(V/I) diets (P < 0.05). H-R (V/I) diet decreased ultimate pH value and sarcomere length of the skeletal muscle but increased the proportion of free water (T 23), consequently, increased drip loss and cooking loss of fresh meat in pigs (P < 0.05). In conclusion, both slaughter weight and dietary ratio of valine to isoleucine exerted significant impacts on carcass characteristics, meat quality and nutrition values. In particular, carcass traits and meat color of lighter pigs were more susceptible to the influence of dietary R (V/I) relative to heavier pigs.

11.
Antioxidants (Basel) ; 11(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35883831

ABSTRACT

Yeast ß-glucan is a natural antioxidant and has been reported to improve growth performance of piglets, but its application in improving pork quality is limited. This study investigated the effects of dietary yeast ß-glucan supplementation on meat quality, antioxidant capacity and gut microbiota of finishing pigs. In a 40-day experiment, ninety finishing pigs (Duroc × Landrace × Yorkshire, 70.47 ± 0.04 kg) were randomly allocated into five treatments including a basal diet supplemented with 0, 50, 100, 200 and 400 mg/kg yeast ß-glucan. Results showed that yeast ß-glucan significantly increased pH45 min (linear and quadratic, p < 0.01) and a*45 min (linear, p < 0.05), and reduced cooking loss (linear, p < 0.05) and drip loss (quadratic, p < 0.05) of meat in finishing pigs. Importantly, the 200 mg/kg group exhibited the highest values of pH45 min (p < 0.01) and the lowest values of drip loss (p < 0.05), accompanied by a decreased lactate content (p < 0.05) and glycolytic potential (p < 0.05). Dietary supplementation of 200 mg/kg yeast ß-glucan markedly increased catalase (CAT) (p < 0.05), superoxide dismutase (SOD) (p < 0.05) and total antioxidant capacity (T-AOC) (p < 0.01) activities in skeletal muscle. Moreover, WPS-2 abundance was decreased significantly in colonic digesta by 200 mg/kg yeast ß-glucan and exhibited a positive association with muscle lactate content and drip loss. Together, dietary 200 mg/kg yeast ß-glucan supplementation effectively improved pH value and the water-holding capacity of fresh meat through reducing muscle postmortem glycolysis, increasing antioxidant capacity and altering the gut microbiota composition of finishing pigs.

12.
Anim Sci J ; 93(1): e13741, 2022.
Article in English | MEDLINE | ID: mdl-35707899

ABSTRACT

Dietary curcumin possessing multiple biological activities may be an effective way to alleviate oxidative damage and fat deposition in intrauterine growth retardation (IUGR) finishing pigs. Therefore, this study was conducted to evaluate effects of dietary curcumin on meat quality, antioxidant capacity, and fat deposition of longissimus dorsi muscle in IUGR finishing pigs. Twelve normal birth weight (NBW) and 24 IUGR female piglets at 26 days of age were divided into 3 dietary groups: NBW (basal diet), IUGR (basal diet), and IUGR + Cur (basal diet supplemented with 200 mg/kg curcumin). The trial lasted for 169 days. Results showed that IUGR increased concentrations of malondialdehyde (MDA) and protein carbonyls (PC) and fat deposition in longissimus dorsi muscle. However, curcumin decreased the intramuscular fat content and the levels of MDA and PC and improved meat quality in IUGR pigs. Furthermore, curcumin inhibited the decrease of nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression and decreased peroxisome pro liferator-activated receptors γ (PPARγ) expression in IUGR pigs. These findings suggested that dietary addition of 200 mg/kg curcumin could improve meat quality, alleviate oxidative stress through activating Nrf2 signaling pathway, and reduce fat deposition via inhibiting PPARγ expression in longissimus dorsi muscle of IUGR finishing pigs.


Subject(s)
Curcumin , Swine Diseases , Animals , Curcumin/metabolism , Curcumin/pharmacology , Dietary Supplements , Female , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/veterinary , Muscle, Skeletal/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , PPAR gamma/metabolism , Swine , Swine Diseases/metabolism
13.
J Anim Sci Biotechnol ; 13(1): 9, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35144690

ABSTRACT

BACKGROUND: Cytosolic Ca2+ plays vital roles in myogenesis and muscle development. As a major Ca2+ release channel of endoplasmic reticulum (ER), ryanodine receptor 1 (RyR1) key mutations are main causes of severe congenital myopathies. The role of RyR1 in myogenic differentiation has attracted intense research interest but remains unclear. RESULTS: In the present study, both RyR1-knockdown myoblasts and CRISPR/Cas9-based RyR1-knockout myoblasts were employed to explore the role of RyR1 in myogenic differentiation, myotube formation as well as the potential mechanism of RyR1-related myopathies. We observed that RyR1 expression was dramatically increased during the late stage of myogenic differentiation, accompanied by significantly elevated cytoplasmic Ca2+ concentration. Inhibition of RyR1 by siRNA-mediated knockdown or chemical inhibitor, dantrolene, significantly reduced cytosolic Ca2+ and blocked multinucleated myotube formation. The elevation of cytoplasmic Ca2+ concentration can effectively relieve myogenic differentiation stagnation by RyR1 inhibition, demonstrating that RyR1 modulates myogenic differentiation via regulation of Ca2+ release channel. However, RyR1-knockout-induced Ca2+ leakage led to the severe ER stress and excessive unfolded protein response, and drove myoblasts into apoptosis. CONCLUSIONS: Therefore, we concluded that Ca2+ release mediated by dramatic increase in RyR1 expression is required for the late stage of myogenic differentiation and fusion. This study contributes to a novel understanding of the role of RyR1 in myogenic differentiation and related congenital myopathies, and provides a potential target for regulation of muscle characteristics and meat quality.

14.
Front Nutr ; 8: 825495, 2021.
Article in English | MEDLINE | ID: mdl-35145985

ABSTRACT

The aim of this study was to investigate effects of dietary malic acid supplementation on skeletal muscle fiber-type transition during nursery period and the subsequent meat quality of finishing pigs. Results showed that malic acid supplementation for 28 days increased oxidative fiber percentage of weaned piglets, accompanied by the increased aerobic oxidation in serum and longissimus thoracis (LT) muscle. Additionally, activities of total antioxidant capacity and glutathione peroxidase in serum were increased. Moreover, dietary malic acid supplementation during nursery period tended to increase pH24h and significantly decreased drip loss in LT muscle of finishing pigs. The content of total saturated fatty acid (SFA) and total monounsaturated fatty acid in LT muscle was significantly decreased, whereas the ratio of polyunsaturated fatty acid to SFA tended to increase. Together, dietary malic acid supplementation during nursery period can effectively increase antioxidant capacity and oxidative fibers percentage of weaned piglets, and further improve water holding capacity and nutritional values of pork in finishing pigs.

15.
J Anim Sci ; 98(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32954422

ABSTRACT

This study was conducted to investigate the effect of taurine as a prophylactic treatment on antioxidant function and inflammatory responses of broilers challenged with lipopolysaccharide (LPS). A total of 256 one-day-old male Arbor Acres broiler chicks were randomly assigned to four treatments with eight replicates of eight birds (eight birds per cage). Four treatment groups were designated as follows: 1) in the CON group, broilers fed a basal diet; 2) in the LPS group, LPS-challenged broilers fed a basal diet; 3) in the LPS + T1 group, LPS-challenged broilers fed a basal diet supplemented with 5.0 g/kg taurine; and 4) in the LPS + T2 group, LPS-challenged broilers fed a basal diet supplemented with 7.5 g/kg taurine. The LPS-challenged broilers were intraperitoneally injected with 1 mg/kg body weight (BW) of LPS at 16, 18, and 20 d of age, whereas the CON group received an injection of sterile saline. The results showed that broilers injected with LPS exhibited decreased (P < 0.05) the average daily gain (ADG) and the 21-d BW (P < 0.05), while taurine supplementation alleviated the negative effects of LPS. Additionally, the LPS-induced increases (P < 0.05) in serum alanine transaminase and aspartate transaminase activities were reversed by taurine supplementation. The taurines could alleviate the hepatic oxidative stress, with the presence of lower content of malondialdehyde (P < 0.05), higher content of glutathione (P < 0.05), and an increased glutathione peroxidase (GSH-Px) activity (P < 0.05). The concentrations of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the liver were measured by ELISA kits, and the result showed that dietary taurine supplementation prevented these cytokines increases in the liver of LPS-induced broilers. Taurine reduced the genes expression of IL-1ß, TNF-α, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase, whereas it boosted the expression levels of antioxidant-related genes (nuclear factor erythroid 2-related factor 2, heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and GSH-Px) in the liver of LPS-induced broilers. In conclusion, dietary taurine supplementation in broilers mitigated LPS-induced defects in ADG, oxidative stress, and inflammatory responses.


Subject(s)
Animal Feed/analysis , Chickens/physiology , Diet/veterinary , Dietary Supplements , Lipopolysaccharides/adverse effects , Taurine/administration & dosage , Animals , Antioxidants/metabolism , Chickens/growth & development , Cytokines/metabolism , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/veterinary , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Taurine/pharmacology
16.
Meat Sci ; 170: 108237, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32739758

ABSTRACT

This study investigated whether resveratrol could improve meat quality, muscular antioxidant capacity, lipid metabolism and fiber type composition of intrauterine growth retarded pigs. Thirty-six pairs of male normal birth weight and intrauterine growth retardation (IUGR) piglets were orally fed with 80 mg resveratrol/kg body weight/d or vehicle during the sucking period (7-21 d). Then the offspring were fed with a basal diet containing 300 mg resveratrol/kg or a basal diet from weaning to slaughter (150 d). The IUGR-impaired meat quality (luminance and yellowness) was associated with muscular oxidative stress via increased Keap1 protein level, fat accumulation, and higher MyHC IIb gene expression. Expectedly, resveratrol increased glutathione peroxidase activity and MyHC I gene expression, reduced protein carbonyl and malondialdehyde contents, enhanced fatty acid oxidation via upregulated PPARα and targeted genes expression, and thereby improving drip loss and yellowness. Results indicate that resveratrol improved meat quality of IUGR pigs through enhancing antioxidant capacity, increasing oxidative fiber composition, and suppressing lipid accumulation.


Subject(s)
Fetal Growth Retardation/veterinary , Pork Meat/analysis , Resveratrol/administration & dosage , Sus scrofa/growth & development , Animal Feed/analysis , Animals , Antioxidants , Diet/veterinary , Female , Gene Expression Regulation , Kelch-Like ECH-Associated Protein 1/analysis , Lipid Metabolism , Male , Muscle Fibers, Skeletal , Oxidative Stress
17.
Animals (Basel) ; 10(3)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213933

ABSTRACT

Intrauterine growth retardation (IUGR) exhibits programming consequences and may induce oxidative stress in growing animals and humans. This study was conducted to investigate the hypothesis that dietary curcumin may protect growing pigs from IUGR-induced oxidative stress via the Nrf2 pathway. Twelve normal birth weight (NBW) and 24 IUGR female piglets were selected and fed control diets supplemented 0 (NBW), 0 (IUGR) and 200 (IUGR + Cur) mg/kg curcumin from 26 to 115 days of age (n = 12). Growth performance, meat quality, redox status and its related Nrf2 pathway were determined. Results showed that IUGR pigs exhibited decreased body weight on 0 d, 26 d and 56 d (p < 0.01) but had no difference on 115 d among NBW, IUGR and IUGR + Cur groups (p > 0.05). Compared with NBW and IUGR groups, a significant decrease in drip loss (24 h and 48 h) was observed in the IUGR + Cur group (p < 0.01). IUGR pigs had higher concentrations of malondialdehyde (MDA) (p < 0.01) and protein carbonyl (PC) (p = 0.03) and lower activities of glutathione peroxidase (p = 0.02), catalase (p < 0.01) and peroxidase (p = 0.02) in leg muscles than NBW pigs. Dietary-added 200 mg/kg curcumin decreased concentrations of MDA and PC and improved the activities of catalase, superoxide dismutase (SOD) and peroxidase as compared to the IUGR group (p < 0.05). Additionally, dietary curcumin enhanced protein (NQO1) and mRNA expression of genes (Nrf2, NQO1, gamma-glutamyltransferase 1 (GGT1), heme oxygenase-1 (HO-1), glutathione S-transferase (GST) and catalase (CAT)) as compared to the IUGR group (p < 0.05). These results suggest that dietary curcumin could serve as a potential additive to enhance redox status and improve meat quality of IUGR growing pigs via the Nrf2 signal pathway.

18.
Animals (Basel) ; 10(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878265

ABSTRACT

The purpose of this study was to explore the effects of curcumin on IUGR jejunum damage. A total of 24 IUGR and 12 normal-birth weight (NBW) female crossbred (Duroc × Landrace × Large White) piglets were randomly assigned into three groups at weaning (26 days): IUGR group, NBW group, and IUGR + CUR group, which were fed diets containing 0 mg/kg (NBW), 0 mg/kg (IUGR) and 200 mg/kg (IUGR + CUR) curcumin from 26 to 115 days of age. Results showed that dietary supplementation with 200 mg/kg curcumin significantly increased the total superoxide dismutase (T-SOD) activity and decreased the malondialdehyde (MDA) content in the jejunum of IUGR pigs (p < 0.05). Results of real-time PCR showed that the IUGR + CUR group significantly increased the gene expression of NF-E2-related factor 2 (Nrf2) (p < 0.05), and increased the glutamate-cysteine ligase catalytic subunit (GCLC), superoxide dismutase 1 (SOD1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone dehydrogenase 1 (NQO1) mRNA expression compared with the IUGR group (p < 0.05). Western blot results showed that dietary supplementation with 200 mg/kg curcumin significantly increased the protein levels of Nrf2 and NQO1. Compared with the IUGR group, pigs in IUGR + CUR group showed significantly decreased the levels of tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), and interferon gamma (IFNγ) (p < 0.05), and increased the interleukin-2 (IL-2) level (p < 0.05). Dietary supplementation with 200 mg/kg curcumin significantly reduced cysteinyl aspartate specific proteinase 3 (caspase3), BCL2-associated X protein (bax), B-cellCLL/lymphoma 2 (bcl2), and heat-shock protein 70 (hsp70) mRNA expression, and increased occludin (ocln) mRNA expression (p < 0.05). In conclusion, dietary supplementation with 200 mg/kg curcumin can alleviate jejunum damage in IUGR growing pigs, through Nrf2/Keap1 pathway.

19.
J Therm Biol ; 85: 102415, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31657756

ABSTRACT

Heat stress, experienced by humans and animals under high ambient temperatures, is known to induce oxidative stress and inflammation, which endangers human health as well as animal welfare and production. The gastrointestinal tract is predominantly responsive to heat stress and compromised intestinal functions can contribute to multi-organ injury under heat environment. Resveratrol (RSV) has significant antioxidant and anti-inflammatory activities. The aim of this study was to investigate the potential effects of RSV on intestinal function (digestion and barrier), oxidative stress and inflammation in heat-stressed rats. Male Sprague-Dawley rats were orally fed with 100 mg RSV/kg body weight/day prior to daily heat stress (40 °C per day for 1.5 h) exposure for 3 consecutive days. The results showed that RSV reversed the increased serum cortisol level and diamine oxidase activity, the altered jejunal morphology, the decreased jejunal disaccharidase activities, the elevated malondialdehyde and tumor necrosis factor alpha concentrations and antioxidant enzymes activities in the jejunum, as well as the increased jejunal mRNA expression of toll-like receptor 4, cytokines, antioxidant enzymes and tight junction proteins in heat-stressed rats, to various degrees. In conclusion, RSV could alleviate intestinal injury and dysfunctions by improving oxidative status and suppressing inflammation in heat-stressed rats.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Heat Stress Disorders/drug therapy , Intestinal Mucosa/drug effects , Oxidative Stress/drug effects , Resveratrol/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/genetics , Disaccharidases/metabolism , Gene Expression/drug effects , Glutathione Peroxidase/metabolism , Heat Stress Disorders/genetics , Heat Stress Disorders/metabolism , Heat Stress Disorders/pathology , Hydrocortisone/blood , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Malondialdehyde/metabolism , Rats, Sprague-Dawley , Resveratrol/pharmacology , Superoxide Dismutase/metabolism
20.
J Therm Biol ; 82: 70-75, 2019 May.
Article in English | MEDLINE | ID: mdl-31128661

ABSTRACT

Heat stress jeopardizes humans and animals health, and results in enormous economic loss in public health care and livestock production. The aim of this study was to investigate the effects of resveratrol on hepatic oxidative stress and inflammation in heat-stressed rats. Male Sprague-Dawley rats were orally fed with 100 mg resveratrol/kg body weight/day prior to heat stress (40 ∘C per day for 1.5 h) exposure for 3 consecutive days. Serum and liver samples were collected for the analysis of hepatic injury, redox status and immune response. The results showed that the heat-stress-induced increased aspartate aminotransferase activities in the serum, aberrant hepatic histology, excessive hepatic malondialdehyde and tumor necrosis factor alpha concentrations, and up-regulation of heat shock protein 70, superoxide dismutase 1, glutathione peroxidase 1, toll-like receptor 4 and interleukin 10 mRNA expression in the liver were mitigated by oral resveratrol treatment. Collectively, the beneficial effects of resveratrol on hepatic damage induced by heat stress were associated with the regulation of oxidative stress and inflammation.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Heat-Shock Response/drug effects , Liver/drug effects , Resveratrol/therapeutic use , Animals , Heat Stress Disorders/metabolism , Heat Stress Disorders/pathology , Heat Stress Disorders/prevention & control , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Liver/metabolism , Liver/pathology , Male , Oxidative Stress/drug effects , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...