Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38981045

ABSTRACT

Because of the high specific capacity and low cost, Ni-rich layered oxide (NRLO) cathodes are one of the most promising cathode candidates for the next high-energy-density lithium-ion batteries. However, they face structure and interface instability challenges, especially the battery safety risk caused by using an intrinsic flammable organic liquid electrolyte. In this regard, a solid electrolyte with high safety is of great significance to promote the development of energy storage. Among them, sulfide electrolytes are considered to be the most potential substitutes for liquid electrolytes because of their high ionic conductivity and good processing properties. Nevertheless, the interfacial incompatibility between the sulfide electrolyte and NRLO cathode is the critical challenge for high-performance sulfide all-solid-state lithium batteries (ASSLBs). In this review, we summarize the problems of the Ni-rich cathode/sulfide solid electrolyte interface and the strategies to improve the interface stability. On the basis of these insights, we highlight the scientific problems and technological challenges that need to be resolved urgently and propose several potential directions to further improve the interface stability. The objective of this study is to provide a comprehensive understanding and insightful recommendations for the enhancement of the sulfide ASSLBs with NRLO cathode.

2.
Angew Chem Int Ed Engl ; : e202411059, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011573

ABSTRACT

Anionic redox chemistry can surpass theoretical limits of conventional layered oxide cathodes in energy density. A recent model system of sodium-ion batteries, O3-NaLi1/3Mn2/3O2, demonstrated full anionic redox capacity but is limited in reversibility and kinetics due to irreversible structural rearrangement and oxygen loss. Solutions to these issues are missing due to the challenging synthesis. Here, we harness the unique structural richness of sodium layered oxides and realize a controlled ratio of P2 structural intergrowth in this model compound with the overall composition maintained. The resulted O3 with 27% P2 intergrowth structure delivers an excellent initial Coulombic efficiency of 87%, comparable to the state-of-the-art Li-rich NMCs. This improvement is attributed to the effective suppression of irreversible oxygen release and structural changes, evidenced by operando Differential Electrochemical Mass Spectroscopy and X-ray Diffraction. The as-prepared intergrowth material, based on the environmentally benign Mn, exhibits a reversible capacity of 226 mAh g-1 at C/20 rate with excellent cycling stability stemming from the redox reactions of oxygen and manganese. Our work isolates the role of P2 structural intergrowth and thereby introduces a novel strategy to enhance the reversibility and kinetics of anionic redox reactions in sodium layered cathodes without compromising capacity.

3.
ACS Appl Mater Interfaces ; 16(9): 11585-11594, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38404137

ABSTRACT

The ether-based electrolytes show excellent performance on anodes in sodium-ion batteries (SIBs), but they still show poor compatibility with the cathodes. Here, ether electrolytes with NaBF4 as the main salt or additive were applied in NFM//HC full cells and showed enhanced performance than the electrolyte with NaPF6. Then, BF4- was found to have a stronger interaction with Na+, which could reduce the solvation of Na+ with the solvent, thus inducing the formation of the cathode electrolyte interface (CEI) and solid electrolyte interface (SEI) layers rich in inorganic species. Moreover, the morphology, structure, composition, and solubility of CEI and SEI were explored, concluding that NaBF4 could induce more stable CEI and SEI layers rich in B-containing species and inorganics. This work proposes using NaBF4 as the main salt or additive to improve the performance of ether electrolytes in NFM//HC full cells, which provides a strategy to improve the compatibility of ether-based electrolytes and cathodes.

4.
Small ; 20(23): e2310318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38183374

ABSTRACT

Low-cost and high-efficiency non-precious metal-based oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) bifunctional catalysts are the key to promoting the commercial application of metal-air batteries. Herein, a highly efficient catalyst of Fe0.18Co0.82 alloy anchoring on the nitrogen-doped porous carbon hollow sphere (FexCo1-x/N-C) is intelligently designed by spray pyrolysis (SP). The zinc in the SP-derived metal oxides and metal-organic framework volatilize at high temperature to construct a hierarchical porous structure with abundant defects and fully exposes the FeCo nanoparticles which uniformly anchor on the carbon substrate. In this structure, the coexistence of Fe0.18Co0.82 alloy and binary metal active sites (Fe-Nx/Co-Nx) guarantees the Fe0.2Co0.8/N-C catalyst exhibiting an excellent half-wave potential (E1/2 ═ 0.84 V) superior to 20% Pt/C for ORR and a suppressed overpotential (280 mV) than RuO2 for OER. Assembled rechargeable Zn-air battery (RZAB) demonstrates a promising specific capacity of 807.02 mAh g-1, peak power density of 159.08 mW cm-2 and durability without electrolyte circulation (550 h). This work proposes the design concept of utilizing an oxide core to in situ consume the porous carbon shell for anchoring metal active sites and construct defects, which benefits from spray pyrolysis in achieving precise control of the alloy structure and mass preparation.

5.
Small ; 20(14): e2308678, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37990362

ABSTRACT

Lithium (Li) metal is regarded as a potential candidate for the next generation of lithium secondary batteries, but it has poor cycling stability with the broadly used carbonate-based electrolytes due to the uncontrollable dendritic growth and low Coulombic efficiency (CE). LiNO3 is an effective additive and its limited solubility (<800 ppm) in carbonate-based electrolytes is still a challenge, as reported. Herein, using BF3 (Lewis acid) is proposed to enhance the solubility of LiNO3 in carbonate-based electrolytes. The dissolved NO3 - can be involved in the first solvation shell of Li+, reducing the coordination number of PF6 - and EC (ethylene carbonate). In addition, the NO3 - is proved to be preferentially reduced on Li metal by differential electrochemical mass spectrometry so that the decomposition of PF6 - and EC is suppressed. Therefore, a SEI layer containing Li3N can be obtained, which exhibits high lithium-ion conductivity, achieving even and dense Li deposits. Consequently, the CE of Li||Cu cell with BF3/LiNO3 can be increased to 98.07%. Moreover, the capacity retention of Li||LiFePO4 with a low N/P ratio (3:1) is as high as 90% after 300 cycles (≈1500 h). This work paved a new way for incorporating LiNO3 into carbonate-based electrolytes and high-performance lithium metal batteries.

6.
Small ; 19(52): e2304162, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37642534

ABSTRACT

Ether-based electrolytes exhibit excellent performance when applied in different anode materials of sodium ion batteries (SIBs), but their exploration on cathode material is deficient and the degradation mechanism is still undiscovered. Herein, various battery systems with different operation voltage ranges are designed to explore the electrochemical performance of ether electrolyte. It is found for the first time that the deterioration mechanism of ether electrolyte is closely related to the "redox shuttle" between cathode and low-potential anode. The "shuttle" is discovered to occur when the potential of anodes is below 0.57 V, and the gas products coming from "shuttle" intermediates are revealed by differential electrochemical mass spectrometry (DEMS). Moreover, effective inhibition strategies by protecting low-potential anodes are proposed and verified; ethylene carbonate (EC) is found to be very effective as an additive by forming an inorganics-rich solid electrolyte interphase (SEI) on low-potential anodes, thereby suppressing the deterioration of ether electrolytes. This work reveals the failure mechanism of ether-based electrolytes applied in SIBs and proposes effective strategies to suppress the "shuttle," which provides a valuable guidance for advancing the application of ether-based electrolytes in SIBs.

7.
Small Methods ; 7(9): e2300232, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37199176

ABSTRACT

Highly uniformly dense garnet type solid-state electrolyte plays a significant role in determining the performance of solid-state lithium batteries. Herein, a rational powder-covering sintering strategy is proposed and demonstrated, in which narrow-particle-size-distribution fine powder and uniform sintering temperature distribution are considered as very significant factors. It is suggested that powder materials with wider particle size distribution dramatically decrease the densified level of electrolytes. Slow temperature elevating rate and the overhead structure of bearing table are found to be beneficial to uniform densification. Moreover, the uniform densification process of sintering solid-state electrolyte is studied both microscopically and macroscopically, which can be divided into three phases according to the grain growing evolution and linear shrinkage patterns. The ionic conductivity of the as-prepared Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) garnet electrolyte is determined to be 0.73 mS cm-1 at 303 K with an activation energy of 0.37 eV. The Li/LLZTO/Li symmetric cell exhibits a small interfacial impedance of 8.49 Ω cm2 and a high apparent critical current density of 2.15 mA cm-2 and also can be cycled for 1000 h continuously without short-circuit. Such results indicate the good feasibility of as-proposed sintering strategy to prepare uniformly dense garnet type solid-state electrolytes for solid-state lithium batteries.

8.
Article in English | MEDLINE | ID: mdl-36881818

ABSTRACT

The Ni-rich layered cathode material LiNi0.8Co0.1Mn0.1O2 (NCM811) with high specific capacity and acceptable rate performance is one of the key cathode materials for high-energy-density lithium-ion batteries. Coprecipitation, the widely utilized method in the precursor synthesis of NCM811 materials, however, suffers long synthetic processes and challenges in uniform element distribution. The spray pyrolysis method is able to prepare oxide precursors in seconds where all transition-metal elements are well distributed, but the difficulty of lithium distribution will also arise when the lithium salts are added in the subsequent sintering process. Herein, a fresh one-step spray pyrolysis approach is proposed for preparing high-performance NCM811 cathode materials by synthesizing lithium-contained precursors in which all elements are well distributed at a molecular level. The precursors with folded morphology and exceptional uniformity are successfully obtained at a low pyrolysis temperature of 300 °C by an acetate system. Furthermore, the final products commendably inherit the folded morphology of the precursors and exhibit excellent cyclic retentions of 94.6% and 88.8% after 100 and 200 cycles at 1 C (1 C = 200 mA g-1), respectively.

9.
Fundam Res ; 3(4): 618-626, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38933559

ABSTRACT

Nickel-rich layered oxides LiNi x Co y Mn1- x - y O2 (x ≥ 0.8) have been recognized as the preferred cathode materials to develop lithium-ion batteries with high energy density (>300 Wh kg-1). However, the poor cycling stability and rate capability stemming from intergranular cracks and sluggish kinetics hinder their commercialization. To address such issues, a multi-scale boron penetration strategy is designed and applied on the polycrystalline LiNi0.83Co0.11Mn0.06O2 particles that are pre-treated with pore construction. The lithium-ion conductive lithium borate in grain gaps functions as the grain binder that can bear the strain/stress from anisotropic contraction/expansion, and provides more pathways for lithium-ion diffusion. As a result, the intergranular cracks are ameliorated and the lithium-ion diffusion kinetics is improved. Moreover, the coating layer separates the sensitive cathode surface and electrolyte, helping to suppress the parasitic reactions and related gas evolution. In addition, the enhanced structural stability is acquired by strong B-O bonds with trace boron doping. As a result, the boron-modified sample with an optimized boron content of 0.5% (B5-NCM) exhibits a higher initial discharge capacity of 205.5 mAh g-1 at 0.1C (1C = 200 mA g-1) and improved capacity retention of 81.7% after 100 cycles at 1C. Furthermore, the rate performance is distinctly enhanced by high lithium-ion conductive LBO (175.6 mAh g-1 for B5-NCM and 154.6 mAh g-1 for B0-NCM at 5C).

10.
Small Methods ; 5(8): e2100234, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34927876

ABSTRACT

Single-crystal nickel-rich cathode materials (SC-NRCMs) are the most promising candidates for next-generation power batteries which enable longer driving range and reliable safety. In this review, the outstanding advantages of SC-NRCMs are discussed systematically in aspects of structural and thermal stabilities. Particularly, the intergranular-crack-free morphology exhibits superior cycling performance and negligible parasitic reactions even under severe conditions. Besides, various synthetic methods are summarized and the relation between precursor, sintering process, and final single-crystal products are revealed, providing a full view of synthetic methods. Then, challenges of SC-NRCMs in fields of kinetics of lithium diffusion and the one particularly occurred at high voltage (intragranular cracks and aggravated parasitic reactions) are discussed. The corresponding mechanism and modifications are also referred. Through this review, it is aimed to highlight the magical morphology of SC-NRCMs for application perspective and provide a reference for following researchers.

11.
iScience ; 23(12): 101821, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33305181

ABSTRACT

Low-cost, scalable energy storage is the key to continuing growth of renewable energy technologies. Here a battery with sedimentary slurry electrode (SSE) is proposed. Through the conversion of discrete particles between sedimentary and suspending types, it not only inherits the advantages of semi-solid flow cell but also exhibits high energy density and stable conductive network. Given an example, the zinc SSE (ZSSE) delivers a large discharge capacity of 479.2 mAh g-1 at 10 mA cm-2. More importantly, by renewal of the slurry per 20 cycles, it can run for 112 and 75 cycles before falling below 80% of designed capacity under 10 mA cm-2 (20% DODZn) and 25 mA cm-2 (25% DODZn), respectively. The lost capacity after cycles is able to recover after slurry renewal and the end-of-life SSE can be easily reused by re-formation. The concept of SSE brands a new way for electrochemical energy storage.

12.
Chem Commun (Camb) ; 55(75): 11175-11178, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31432822

ABSTRACT

Novel triclinic LiV(PO4)0.9F1.3, characterized through its crystal lattice expansion, ultrafine primary particle size and uniform carbon coating, was designed and fabricated through regulating the PO4/F ratio. It exhibited excellent electrochemical performance, maintaining 105 mA h g-1 at 50C and 92.9% capacity retention after 500 cycles at 10C due to its superior structural stability, greater charge transfer properties, enhanced electronic conductivity and fast Li+ diffusion kinetics.

13.
Chem Soc Rev ; 48(11): 3015-3072, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31098599

ABSTRACT

Functional nanostructured materials have attracted great attention over the past several decades owing to their unique physical and chemical properties, while their applications have been proven to be advantageous not only in fundamental scientific areas, but also in many technological fields. Spray pyrolysis (SP), which is particularly facile, effective, highly scalable and suitable for on-line continuous production, offers significant potential for the rational design and synthesis of various functional nanostructured materials with tailorable composition and morphology. In this review, we summarize the recent progress in various functional nanostructured materials synthesized by SP and their potential applications in energy storage and conversion. After a brief introduction to the equipment, components, and working principles of the SP technique, we thoroughly describe the guidelines and strategies for designing particles with controlled morphology, composition, and interior architecture, including hollow structures, dense spheres, yolk-shell structures, core-shell structures, nanoplates, nanorods, nanowires, thin films, and various nanocomposites. Thereafter, we demonstrate their suitability for a wide range of energy storage and conversion applications, including electrode materials for rechargeable batteries, supercapacitors, highly active catalysts for hydrogen production, carbon dioxide reduction and fuel cells, and photoelectric materials for solar cells. Finally, the potential advantages and challenges of SP for the preparation of nanostructured materials are particularly emphasized and discussed, and several perspectives on future research and development directions of SP are highlighted. We expect that this continuous, one-pot, and controllable synthetic technology can serve as a reference for preparing various advanced functional materials for broader applications.

14.
Nat Commun ; 10(1): 585, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718474

ABSTRACT

The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na3V2(PO4)2F3/C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered NaxV2(PO4)2F3 phase of tetragonal symmetry (I4/mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na+/Na0. We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10-20% increase in the overall energy density.

15.
Chem Commun (Camb) ; 54(30): 3755-3758, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29589851

ABSTRACT

A facile and large-scale fluidized bed reaction route was introduced for the first time to prepare crystalline embedded amorphous silicon nanoparticles with an average size of 50 nm as anode materials for lithium-ion batteries. By increasing the operating potential to control the electrochemically active degree, the resulting sample showed excellent cycle stability with a high capacity retention of 94.7% after 200 cycles at 1 A g-1 in the voltage range of 0.12-2.00 V.

SELECTION OF CITATIONS
SEARCH DETAIL
...