Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(1)2024 01 09.
Article in English | MEDLINE | ID: mdl-38254972

ABSTRACT

Dwarfing and the selection of optimal plant types constitute the primary focus of sorghum breeding. However, the lack of clarity regarding the gene types associated with plant height genes Dw1-Dw4 in the primary breeding materials has led to increased plant heights in improved offspring of the same plant height type, resulting in unsatisfactory morphological traits. This study aimed to elucidate the gene types related to plant height in breeding materials, validate the regulatory mechanisms, and establish a material improvement system. The goal was to achieve molecular-marker-assisted dwarf breeding through the detection of plant height genes and the test cross verification of main Chinese sorghum materials. Using 38 main male sterile lines and 57 main restorer lines of grain sorghum as materials, three plant height genes were detected and classified. Ninety-five F1 generation hybrids of these materials, along with typical materials, were measured at the wax maturity stage. Test cross results demonstrated that the variation in dw1-dw3 genes in the breeding materials significantly influenced the plant height of hybrid offspring. The main male sterile lines in Chinese sorghum predominantly exhibited the "three-dwarf" type of Kafir and its improved lines, characterized by the genotype (Dw1-Dw2-dw3-dw4). On the other hand, restorer lines mainly showcased the improved "two-dwarf" (Dw1-Dw2-dw3-dw4) genotype of the Kaoliang/Caudatum subspecies, along with the "three-dwarf" type of some Kafir and its improved lines. The test materials predominantly contained dw3 genes, with relatively fewer dw1 genes in the restorer lines. The primary restorer materials lacked the dw2 gene, and dw2 significantly influenced plant type. The increased plant height in improved offspring of the same plant height type material was attributed to differences in gene types. Therefore, the enhancement of plant height in breeding materials should prioritize the use of different methods in conjunction with Dw1 and Dw2 classification.


Subject(s)
Infertility , Sorghum , Sorghum/genetics , Plant Breeding , Genotype , China , Phenotype , Edible Grain
2.
Genes (Basel) ; 14(6)2023 06 02.
Article in English | MEDLINE | ID: mdl-37372395

ABSTRACT

Sorghum with longer mesocotyls is beneficialfor improving its deep tolerance, which is important for the seedling rates. Here, we perform transcriptome analysis between four different sorghum lines, with the aim of identifying the key genes regulating sorghum mesocotyl elongation. According to the mesocotyl length (ML) data, we constructed four comparison groups for the transcriptome analysis and detected 2705 common DEGs. GO and KEGG enrichment analysis showed that the most common category of DEGs were involved in cell wall, microtubule, cell cycle, phytohormone, and energy metabolism-related pathways. In the cell wall biological processes, the expression of SbEXPA9-1, SbEXPA9-2, SbXTH25, SbXTH8-1, and SbXTH27 are increased in the sorghum lines with long ML. In the plant hormone signaling pathway, five auxin-responsive genes and eight cytokinin/zeatin/abscisic acid/salicylic acid-related genes showed a higher expression level in the long ML sorghum lines. In addition, five ERF genes showed a higher expression level in the sorghum lines with long ML, whereas two ERF genes showed a lower expression level in these lines. Furthermore, the expression levels of these genes were further analyzed using real-time PCR (RT-qPCR), which showed similar results. This work identified the candidate gene regulating ML, which may provide additional evidence to understand the regulatory molecular mechanisms of sorghum mesocotyl elongation.


Subject(s)
Sorghum , Sorghum/metabolism , Gene Expression Profiling , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Cytokinins , Abscisic Acid , Edible Grain/genetics
3.
NPJ Genom Med ; 7(1): 31, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35562572

ABSTRACT

Structural anomalies of the central nervous system (CNS) are one of the most common fetal anomalies found during prenatal imaging. However, the genomic architecture of prenatal imaging phenotypes has not yet been systematically studied in a large cohort. Patients diagnosed with fetal CNS anomalies were identified from medical records and images. Fetal samples were subjected to low-pass and deep whole-genome sequencing (WGS) for aneuploid, copy number variation (CNV), single-nucleotide variant (SNV, including insertions/deletions (indels)), and small CNV identification. The clinical significance of variants was interpreted based on a candidate gene list constructed from ultrasound phenotypes. In total, 162 fetuses with 11 common CNS anomalies were enrolled in this study. Primary diagnosis was achieved in 62 cases, with an overall diagnostic rate of 38.3%. Causative variants included 18 aneuploids, 17 CNVs, three small CNVs, and 24 SNVs. Among the 24 SNVs, 15 were novel mutations not reported previously. Furthermore, 29 key genes of diagnostic variants and critical genes of pathogenic CNVs were identified, including five recurrent genes: i.e., TUBA1A, KAT6B, CC2D2A, PDHA1, and NF1. Diagnostic variants were present in 34 (70.8%) out of 48 fetuses with both CNS and non-CNS malformations, and in 28 (24.6%) out of 114 fetuses with CNS anomalies only. Hypoplasia of the cerebellum (including the cerebellar vermis) and holoprosencephaly had the highest primary diagnosis yields (>70%), while only four (11.8%) out of 34 neural tube defects achieved genetic diagnosis. Compared with the control group, rare singleton loss-of-function variants (SLoFVs) were significantly accumulated in the patient cohort.

4.
Theor Appl Genet ; 135(3): 1101-1111, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35083509

ABSTRACT

KEY MESSAGE: KT1 was validated as a novel thickness QTL with major effects on wheat kernel dimensions and weight and fine mapped to a 0.04 cM interval near the chromosome-5A centromere. Kernel size, the principal grain weight determining factor of wheat and a target trait for both domestication and artificial breeding, is mainly defined by kernel length (KL), kernel width (KW) and kernel thickness (KT), of which KW and KT have been shown to be positively related to grain weight (GW). Qkt.nau-5A, a major QTL for KT, was validated using the QTL near-isogenic lines (NILs) in three genetic backgrounds. Genetic analysis using two F2 populations derived from the NILs showed that Qkt.nau-5A was dominant for thicker kernel and inherited like a single gene and therefore was designated as Kernel Thickness 1 (KT1). With 77 recombinant lines identified from a total of 19,160 F2 plants from the two NIL-derived F2 populations, KT1 was mapped to the 0.04 cM Xwgrb1356-Xwgrb1619 interval, which was near the centromere and displayed strong recombination suppression. The KT1 interval showed positive correlation with KW and GW and negative correlation with KL and therefore could be used in breeding for cultivars with round-shaped kernels that are beneficial to higher flour yield. KT1 candidate identification could be achieved through combination of sequence variation analysis with expression profiling of the annotated genes in the interval.


Subject(s)
Chromosomes, Plant , Triticum , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Edible Grain/genetics , Phenotype , Plant Breeding , Quantitative Trait Loci , Seeds/genetics , Triticum/genetics
5.
Brain ; 144(12): 3623-3634, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34145886

ABSTRACT

The aim of this study is to evaluate the diagnostic value of genome sequencing in children with epilepsy, and to provide genome sequencing-based insights into the molecular genetic mechanisms of epilepsy to help establish accurate diagnoses, design appropriate treatments and assist in genetic counselling. We performed genome sequencing on 320 Chinese children with epilepsy, and interpreted single-nucleotide variants and copy number variants of all samples. The complete pedigree and clinical data of the probands were established and followed up. The clinical phenotypes, treatments, prognoses and genotypes of the patients were analysed. Age at seizure onset ranged from 1 day to 17 years, with a median of 4.3 years. Pathogenic/likely pathogenic variants were found in 117 of the 320 children (36.6%), of whom 93 (29.1%) had single-nucleotide variants, 22 (6.9%) had copy number variants and two had both single-nucleotide variants and copy number variants. Single-nucleotide variants were most frequently found in SCN1A (10/95, 10.5%), which is associated with Dravet syndrome, followed by PRRT2 (8/95, 8.4%), which is associated with benign familial infantile epilepsy, and TSC2 (7/95, 7.4%), which is associated with tuberous sclerosis. Among the copy number variants, there were three with a length <25 kilobases. The most common recurrent copy number variants were 17p13.3 deletions (5/24, 20.8%), 16p11.2 deletions (4/24, 16.7%), and 7q11.23 duplications (2/24, 8.3%), which are associated with epilepsy, developmental retardation and congenital abnormalities. Four particular 16p11.2 deletions and two 15q11.2 deletions were considered to be susceptibility factors contributing to neurodevelopmental disorders associated with epilepsy. The diagnostic yield was 75.0% in patients with seizure onset during the first postnatal month, and gradually decreased in patients with seizure onset at a later age. Forty-two patients (13.1%) were found to be specifically treatable for the underlying genetic cause identified by genome sequencing. Three of them received corresponding targeted therapies and demonstrated favourable prognoses. Genome sequencing provides complete genetic diagnosis, thus enabling individualized treatment and genetic counselling for the parents of the patients. Genome sequencing is expected to become the first choice of methods for genetic testing of patients with epilepsy.


Subject(s)
DNA Copy Number Variations/genetics , Epilepsy/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Adolescent , Asian People/genetics , Child , Child, Preschool , Female , Genetic Testing/methods , Genome-Wide Association Study , Genotype , Humans , Infant , Infant, Newborn , Male
6.
Theor Appl Genet ; 134(9): 3037-3049, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34110431

ABSTRACT

KEY MESSAGE: Stably expressed type I and type II resistance QTL were identified using two Yangmai 158-derived RIL populations, and plant-height and flowering-time QTL intervals detected did not contribute to the FHB resistance variations. Yangmai 158 (Y158) is an elite wheat cultivar widely grown in China with stable Fusarium head blight (FHB) resistance. To enrich the genetic basis underlying FHB resistance, QTL mapping was conducted using two recombinant inbred line (RIL) populations derived from crosses of Y158 with susceptible lines Annong 8455 and Veery. Survey with makers linked to Fhb1, Fhb2, Fhb4 and Fhb5 in resistance cultivar Wangshuibai indicated that both Y158 and the susceptible lines do not contain these QTL. The RIL populations were surveyed with 65 PCR markers and 55 K chip, which generated 23,159 valid marker data, to produce genetic maps for whole genome scanning of quantitative trait loci (QTL). A total of six QTL, all with the Y158 alleles for better resistance and including one stably expressed QTL for type I resistance (Qfhi.nau-2D) and one stably expressed QTL for type II resistance (Qfhs.nau-2A), were identified. Moreover, taking advantage of the great genetic variations in plant height and flowering time, QTL conditioning these two traits were determined. Of six plant-height QTL and three flowering-time QTL intervals detected, none were associated with FHB resistance. The FHB resistance QTL in Y158 were shown to be useful alternatives in FHB resistance breeding programs. The SNP markers flanking Qfhs.nau-2A and Qfhi.nau-2D have been converted to breeder-friendly PCR-based markers to facilitate their applications.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Disease Resistance/immunology , Fusarium/physiology , Plant Diseases/immunology , Plant Proteins/metabolism , Triticum/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Triticum/growth & development , Triticum/microbiology
7.
Nat Genet ; 51(7): 1106-1112, 2019 07.
Article in English | MEDLINE | ID: mdl-31182810

ABSTRACT

Head or ear blight, mainly caused by Fusarium species, can devastate almost all staple cereal crops (particularly wheat), resulting in great economic loss and imposing health threats on both human beings and livestock1-3. However, achievement in breeding for highly resistant cultivars is still not satisfactory. Here, we isolated the major-effect wheat quantitative trait locus, Qfhs.njau-3B, which confers head blight resistance, and showed that it is the same as the previously designated Fhb1. Fhb1 results from a rare deletion involving the 3' exon of the histidine-rich calcium-binding-protein gene on chromosome 3BS. Both wheat and Arabidopsis transformed with the Fhb1 sequence showed enhanced resistance to Fusarium graminearum spread. The translation products of this gene's homologs among plants are well conserved and might be essential for plant growth and development. Fhb1 could be useful not only for curbing Fusarium head blight in grain crops but also for improving other plants vulnerable to Fusarium species.


Subject(s)
Calcium/metabolism , Disease Resistance/genetics , Fusarium/physiology , Histidine/chemistry , Mutation , Plant Diseases/genetics , Plant Proteins/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Plant Diseases/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...